
The Essential Elements

of Debugging Software Programs

Wm. M. Stewart

14 November 1989

Insects are small but their world is large,
and they outbreed us all the time. N. J.
Berrill, Sex and the Nature of Things, 1953

A computer program that produces incorrect re-
sults has a logic error—a bug. Unfortunately, auto-
mated prevention of all bugs is and will forever be
impossible, for the machine can only execute your
instructions, not your intentions. In other words, an
automatic system might be able to identify syntax,
format, and other ‘obvious’ errors, but a program
that runs just fine and prints garbage has a logic
error that only you can correct.

The debugging challenge is therefore first to mini-
mize the number of bugs up front, and then to track
down the ones that slip through as quickly as possi-
ble. The following guide is a checklist to assist you
in both these activities.

1

1. Prevention

The first principle of bug prevention: understand
the problem completely; write the solution top-
down; desk-check the program with simple data;
only then run the program on the machine for the
first time.

Use meaningful variable names, consistent indent-
ing, and generous horizontal and vertical space, for
bug prevention is heavily dependent on program
readability. Where more than one choice is pos-
sible, adopt a standard format for variable names,
comment blocks, continued statements, subprogram
headers, etc.

Use the shortest, simplest solution possible, for
shorter, simpler programs have less bugs. (At the
same time, break complex expressions in two, avoid
tricky code, and in general favor clarity over brevity.)

Never write the same code twice: encapsulate any
replicated process in a subprogram. Divide subpro-
grams longer than a page into smaller logical units.
Debug subprograms separately whenever test cases
can be easily generated.

Initialize all variables, including arrays and point-
ers. Never use a variable for a second purpose, even
if no longer required for the first purpose (exception:
elementary loop counters).

Verify in the code that input data has the correct
format. Verify in the code that subprogram param-
eters have the correct format. Echo all input data.

Parenthesize expressions when in doubt about op-
erator priority. Explicitly convert variables of differ-
ent data-types to the same data-type when combined
in the same expression.

Include code in decision structures to print an er-
ror message for the excluded case.

Beware of floating point round-off. Use the highest
floating point precision possible.

Use a debugging compiler when available. Acti-
vate all debugging aids like subscript checking and
overflow detection. Be aware of default declarations.

2. Cure

Write a dump routine to print the program vari-
ables with labels: either write a subprogram which
accesses the variables globally, or write the dump
routine as a block of code in the main program and
then copy it from place to place with the text editor.
If using a subprogram, pass a text parameter to title
the dump—usually the location of the call.

Track down each bug with the binary search algo-
rithm: dump the variables at the beginning of the
program; copy the dump forward until the first dump
prints correct data and the second dump prints in-
correct data; repeatedly divide this interval in half
until the location of the bug has been narrowed down
to one line.

Dump the variables before and after decision
structures, before and at the end of loops, before
and after subprogram calls, and at the beginning
and end of subprograms, as required.

Reduce debugging output by first tracing the flow
of control through nested, high iteration structures
before invoking the dump routine, with statements
like:

print ‘debug - while loop 1’

print ‘debug - for loop 2 - J =’, J

print ‘debug - if block 3a’

Data-dependent debugging can be use to reduce
debugging output or to trap anticipated bugs:

if DebugSwitch then

call Dump (‘debug - start search’)

if K > 100 then

call Dump (‘debug - for loop 4’)

if Count < 0 then

call Dump (‘debug - negative Count’)

Always debug from a current listing. Timestamp
all output.

Fix the earliest error first. Only fix one bug at a
time. Check the simplest possibilities first.

Mark debugging statements with the string
‘debug’, enabling easy location with the text editor.

Comment out debugging statements not currently
required instead of deleting them.

Finally, stay calm. Program debugging is excellent
exercise for the rational mind, and the capture of
each bug is its own reward. Good luck, and good
bug-hunting!

2

