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Abstract

The incremental construction of convex hulls is investigated. Given a set

of n points S in <d in general position, a data structure is given and an

algorithm implemented to add a point to an existing convex hull in Θ(d3)

expected time in the number of new facets created. The storage to store a

convex hull is Θ(dm) in the number of facets m. When the set of points

S can be preprocessed the convex hull can be constructed directly. For

the online problem a Two-Flat algorithm is described to identify interior

points or a visible facet as required by walking a circuit of facets in the

convex hull defined by an intersection with a 2-flat. The performance of

the algorithms are investigated for the construction of cyclic polytopes, and

convex hulls of sets distributed on (distribution A) and in (distribution B)

d-dimensional spheres. Cyclic polytopes can be constructed in Θ(d3m) time,

or Θ(d2m) time with an increase in storage by a factor of d, where the Two-

Flat algorithm has negligible cost even in low dimensions. The preprocessing

construction of convex hulls from distribution A creates less than 2dm facets

in total for the sets studied. For convex hulls from distribution A the Two-

Flat algorithm becomes more efficient as the dimension rises, and for d ≥ 5

increases the total processing by less than a factor of two; an argument is

given to support the conjecture that the Two-Flat algorithm has worst-case
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complexity O (m1/(d−1)) for distributions A and B. The online construction of

convex hulls from distribution A can then be done in Θ(d4m) time, or Θ(d3m)

time by increasing the storage by a factor of d. Convex hulls in three through

ten dimensions are constructed with 24 megabytes of available space for

storage of the data structure, limiting n to approximately 350, 120, 60, and

45 in dimensions 7, 8, 9, and 10 respectively. For sets of points distributed in

spheres, interior points should be removed in a preprocessing step whenever

the number of vertices of the final convex hull is signifigantly less than n.

Generation of Delauney triangulations of some real-world surveying data by

Brown’s method is also investigated.
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Chapter 1

Introduction

The convex hull problem is a central one in the area of computational geom-

etry, with application to stock cutting and allocation, intersection of spheres,

robotics and graphics, generation of voronoi diagrams, and other problems.

In many cases, particularly in the plane, generation of the convex hull is a

necessary preprocessing step for some other algorithm.

The convex hull of a finite set S of n points in d dimensions is an intuitively

natural structure with three equivalent definitions commonly used to define

it.

For example, the convex hull of S may be defined to be the intersection

of all convex sets containing S, or, alternatively, as the smallest convex set

containing S. More formally, the following definition suits our purposes best.
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Definition 1 The convex hull conv (S) of a set of n points S = {p1, . . . , pn}

in <d is the closed convex set of all convex combinations of the points of S.

That is:

conv (S) = {α1p1 + · · ·+ αnpn | α1 + · · ·+ αn = 1, αi ≥ 0}

In one dimension the convex hull of a set of points S from the real line is

simply the closed segment [min(S),max(S)]. The solution to the problem is

Ω(n) and an optimal algorithm is just a linear search.

-�

0
s s s s s s s� �conv (S)

Figure 1.1: Convex Hull in the Real Line

In the plane conv (S) is the smallest convex polygon containing the set

of points S, and the solution is usually represented by an ordered set of the

polygon’s edges.

A lower bound to the time complexity of the planar problem is found

by noting that sorting is transformable to the planar convex hull problem.
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This can be done by placing the points of the set S on a parabola, so that

a solution to the convex hull problem produces an ordered set of edges that

correspond to an ordering of the set S by first coordinate. The planar convex

hull problem therefore has a lower bound of Ω(n log n).
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Figure 1.2: Convex Hull in the Plane

On the other hand, even though all known planar convex hull algorithms

return an ordered set of edges, it is worth noting that the Ω(n log n) bound

can also be derived using a result concerning maximal vectors [17]. The lower

bound then doesn’t rely on the condition that the set of convex hull edges

found by an algorithm must be ordered, and also applies to any algorithm,

even algorithms which simply return an unordered set of edges or just a list

of the extreme points of S.

3



The Graham Scan [12] was the first optimal convex hull algorithm de-

veloped for two dimensions. Graham’s algorithm sorts the points by angle

around any point interior to the set S (say, the centroid of any three non-

collinear points of S), and then constructs the convex hull point by point in

the order defined by the sort. For each addition, only a constant amount

of backtracking is required overall to delete edges previously added and su-

perceded by the current point. The complexity of the initial sort is therefore

the major operation of the algorithm, and the Graham Scan has optimal

complexity of Θ(n log n).

A number of subsequent algorithms have been developed for the two

dimensional problem, each with computational advantages for particular

distributions of points. For example, Jarvis’s algorithm [14] has expected

complexity O (n4/3) for points distributed uniformly in a circle (note that

n4/3 < n log n up to approximately 1000). Eddy’s algorithm [11] is O (n)

for points distributed uniformly in a convex polygon, uniformly in a circle,

and normally in the plane. And the Akl-Toussaint algorithm [2] is O (n) for

points distributed uniformly in a square.

In three dimensions, conv (S) is a three dimensional polytope or bounded

polyhedron with polygonal facets. Geodesic domes (and their interior) are

typical examples of convex hulls in <3. Whether represented by points, edges,

4



or facets, a three dimensional hull can be stored in only O (n) space, but the

Ω(n log n) lower bound on the time complexity is inherited from the plane.

Only one known algorithm, Preparata and Hong’s Divide and Conquer

algorithm, achieves optimality in three dimensions [17]. This algorithm first

divides the given set of points S into two disjoint sets S1 and S2. This can

be done by any of several methods in linear time, such as splitting the set by

first coordinate. The algorithm then constructs the convex hulls conv (S1)

and conv (S2) recursively. The final step merges conv (S1) ∪ conv (S2) in

linear time. This merge is done by constructing the ‘cylindrical’ set of facets

joining the two disjoint hulls with a linear algorithm. A classic example of

the divide-and-conquer paradigm, this algorithm has O (n log n) complexity

since the number of facets of the three dimensional convex hull is no more

than O (n). A much simpler version of Preparata and Hong’s algorithm is

also given for the planar case.

Unfortunately, the more complex facial data structure of higher dimen-

sional convex hulls has so far prevented the development of a general convex

hull merge procedure for any dimension greater than three. Although it may

provide some promise, the divide and conquer paradigm has not yet been ap-

plied to the general case, and a general procedure independent of dimension

must be expected to be diffucult.
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Basic assumptions, definitions, and theorems required for the develop-

ment of the subsequent material are given next in chapter 2. In chapter

3 algorithms for the higher dimensional convex hull problem are discussed.

In chapter 4 the data structure used to represent a convex hull is described

together with an incremental update algorithm to add a point to an existing

convex hull. In chapter 5 two cases are discussed, one for the case when the

set is known and can be preprocessed, and one for the online case when the

points arrive from an external source and a Two-Flat algorithm is used to

identify interior vertices or a visible facet as required. In chapter 6 we dis-

cuss implementation issues, the behavior of the algorithms in practice for the

construction of cyclic polytopes and convex hulls of points distributed in and

on spheres, expected complexities, space considerations, an application, and

related matters. Conclusions are given in chapter 7. Appendix A includes

the listing of the software in PL/1. Appendix B contains tables of data.
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Chapter 2

Definitions and Theorems

In this chapter the basic assumptions, definitions, and theory required in the

following chapters is described.

Consider a set of points S = {p1, . . . , pn} in <d, for d greater than 2. We

make the following assumption

Assumption The set S is in general position, i.e., no k+ 2 points appear in

any k − flat.

The vertices of the convex hull, also called the extreme points, are the

fundamental building blocks of convex hulls.

Definition 2 An extreme point p of S is not the convex combination of any
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other two or more other points of S. The set of all extreme points is denoted

ext(S).

Convex hulls are equivalent to closed convex polytopes of finite point sets.

Theorem 1 (Brondsted, theorem 7.2) The polytope P = conv (S) is the

convex polytope of the extreme points of S.

Convex hulls and convex polytopes, or just hull and polytope, will there-

fore be referred to interchangably throughout the following.

The facial structure of convex polytopes has been much investigated, and

forms the basic theory of many important areas such as linear programming.

Definition 3 A face F of a convex polytope P is a convex subset such that,

for any two distinct points y and z in P , with ]y, z[ ∩F not empty, then

[y, z] lies wholly in F .

That is, for any two points in the polytope, if the interior of the line

segment connecting those two points intersects a face F , then the entire line

segment must lie in F . This definition implies that the faces of a convex

polytope are closed convex sets, and that they lie on the boundary of the

hull.

A face F is called a k-face when dim(F ) = k. By convention the (−1)-

face is the empty set and the d-face is the entire polytope. These two faces
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are called the improper faces of P .

The proper faces of P are those of dimension 0 through d − 1, or points

through facets. For example, a convex hull in the plane has two types of

proper faces—points and edges. A convex hull in three dimensions has three

types of proper faces—points, edges, and triangular facets. In four dimen-

sions a convex hull has four types of proper faces—points, edges, triangles,

and tetrahedronal facets. And so on.

One property that makes convex hulls such natural structures is that each

proper face of a hull is itself a lower dimensional convex hull.

Theorem 2 (Brondsted, theorem 7.3) Every proper k-face F of a con-

vex polytope P is itself a k-polytope, and ext(F ) ⊂ ext(S).

Because the set of points is assumed to be in general position, every

proper k-face is not only a k-polytope but also a k-simplex defined by k + 1

points of the set S. A k-face F will therefore be represented by its k + 1

extreme points ext(F ) ⊂ S.

The faces of main interest for our purposes will be the three proper faces

of dimension (d − 1), (d − 2), and (d − 3), which we call facets, subfacets,

and subsubfacets respectively.

The following well known theorem regarding facets and subfacets forms

the basis of Chand and Kapur’s Giftwrapping algorithm, Jarvis’s algorithm,
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Preparata and Hong’s divide and conquer algorithm, as well as the algorithms

presented in this thesis, imposing a simple and useful structure on convex

polytopes.

Theorem 3 Each subfacet of a convex polytope is contained in exactly two

neighboring facets.

Since each facet of a d-polytope is a d-simplex, each has d subfacets and

d neighboring facets, one neighbor for each subfacet. We are assured that

the d neighbors are distinct as a consequence of simple convexity.

In higher dimensions it is difficult to give any consistent characterization

of an ‘average’ convex hull independent of an underlying application, since

the number of facets of a polytope varies very widely with d and n and

depends heavily on the distribution of the given set of points S.

In the best case, the number of facets may be as little as O (1). On the

other hand, when the points of S fall on a moment curve of the following

form

( t, t2, t3, . . . , td ), t ∈ <

we call conv (S) a cyclic polytope, and encounter a particularly difficult dis-

tribution. Cyclic polytopes constitute the worst case convex hulls from the

point of view of space, with O (nbd/2c) facets [20]. Even neglecting the sig-

nifigant constant factors, it can be readily seen that cyclic polytopes cannot
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be generated in practice for all but very small n and d. Fortunately, cyclic

polytopes are considered to be special objects that are unlikely to arise in all

but the most specialized applications.

However, the number of convex hull facets has been shown to be much

lower than O (nbd/2c) for a wide range of so-called ‘average’ distributions of

points, such as sets of points uniformly distributed in and on convex bodies

[10]. For example, for sets of points distributed in or on spheres the number of

facets of the convex hull is only O (n) for fixed d. These kinds of distributions

are generally considered to be more likely to arise in actual applications, and

therefore are of more practical interest than the extreme case typified by

cyclic polytopes.

Even for these spherical distributions though the number of facets rises

very quickly with the dimension d, in practice quickly exceeding the capacity

of on-line storage even for relatively small problems, such as a hundred points

in ten dimensions. It is this rapid growth in the size of the output for non-

trivial distributions that makes the convex hull problem in higher dimensions

particularly difficult. Some problems with relatively small input size, such

as 500 points distributed on a sphere in <100, must be considered practically

insoluble in the foreseeable future simply because of the extreme size of the

output.

11



Chapter 3

The Higher Dimensional

Problem

In higher dimensions, four and greater, there are three common represen-

tations of convex hulls that may be appropriate for any given problem or

application.

The first and simplest type of problem is the vertex enumeration problem.

This problem concerns itself with finding just the vertices or extreme points

ext(S) of the convex hull, or, equivalently, eliminating all interior points.

A straightforward solution to the vertex enumeration problem can be

found simply by n invocations of a linear programming algorithm, one invo-

cation for each point of the set S. For example, to determine whether or not

12



the last point pn is a vertex of the convex hull or an interior point, we can

determine whether or not a feasible solution exists for the following linear

programming problem, where each point pi of S is considered to be a column

vector, and the coefficients αi lie in <.

Subject to α1p1 + · · ·+ αn−1pn−1 = pn

α1 + · · ·+ αn−1 = 1

αi ≥ 0

The objective function, and whether it is to be maximized or minimized,

is actually irrelevant, since all that is required is a feasible solution. If a

feasible solution can be found, then it will be an expression of the point pn

as a convex combination of some other d+ 1 points of S, which immediately

implies that it must be interior to conv (S). On the other hand, if no feasible

solution to the problem can be found, then pn is not the convex combination

of any other d+1 points of the set S. Assuming that S is in general position,

the point pn must then be an extreme point of the set.

By repetition of this procedure for every point of the set S, placing each

point on the right hand side in turn, the solution to the vertex enumeration

problem in can be found in O (n2) time. Since the number of facets m of

convex hulls of many distributions is only O (n), one might conclude that an
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O (n2) solution to the vertex enumeration problem is not good, but it will be

shown later that there is a wide range of n and d for some distributions for

which it may be acceptable.

The convex hull problem is usually framed as a facet enumeration prob-

lem, where we are interested in finding just the facets of the hull—the proper

faces of highest dimension, or in the most general way as the facial graph

problem which finds the faces of the convex hull of all dimensions with rela-

tionships of inclusion, also called the Hasse diagram [20], that is, where each

k-dimensional face of the convex hull has a pointer to each of the (k + 1)-

dimensional faces in which it is contained. The facial graph is particularly

useful for applications in which the question must be asked: ‘do these given

k + 1 points define a k-face of the convex hull conv (S)?’.

Chand and Kapur’s Giftwrapping algorithm [7] finds the facets of the

convex hull in O (n m) time for fixed dimension, where m is the actual num-

ber of facets of the convex hull to be found, and was the first convex hull

algorithm for the higher dimensional case. The algorithm starts with one

facet of the hull, which can be easily found by a recursive invocation of the

giftwrapping algorithm itself, and then the set of subfacets of this first face

are added to an initially empty list of subfacets. For each subfacet of this

list until empty the giftwrapping procedure is then employed. For example,
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for a set in general position in <3, all facets are triangles. The algorithm

wraps a halfplane around each edge in the subfacet list until it hits a point

in the set, thereby identifying a new facet, and possibly adding new edges to

the subfacet list. Similarly, in four dimensions, the algorithm wraps around

triangular subfacets to find new tetrahedronal facets. The algorithm repeats

the procedure until the subfacet list is empty and the entire convex hull has

been found.

Seidel developed two facet finding algorithms. His ‘shelling’ algorithm

[22] finds the facets of the hull in O (n2 +m log n) time for fixed dimension

by a traversal of a shelling line through the convex hull. For example, in three

dimensions we might define a shelling line that passes through the interior

of the polytope and intersects two facets on opposite sides of the hull. The

set of facets can then be enumerated in shelling order, i.e., in the order they

become visible on an outward traversal of the shelling line on one side and

in the order they disappear on an inward traversal of the shelling line on

the other side. The algorithm maintains the boundary of the current set of

visible facets in a manner that allows the identification of the next facet at

logarithmic cost, with no more than n iterations of the simplex algorithm to

handle special cases.

Seidel other facet finding algorithm is randomized and incremental with
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expected time complexity O (nbd/2c) [23]. The addition of each new point

necessitates the use of a linear programming algorithm as a preprocessing

step, after which the facet graph can be updated in a straightforward manner

(with a radix sort to maintain the data structure) in time O (n+N) where

n is the number of vertices and N is the number of new facets added.

Clarkson and Shor’s facet finding algorithm uses Las Vegas random sam-

pling methods in the dual space to generate the convex hull in O (m logm)

expected time for fixed dimension [8]. A bipartite conflict graph is main-

tained to speed up the algorithm, maintaining the relationship between each

halfplane and the edges of the hull not in the halfplane. Clarkson has also

developed an online version of the algorithm, which maintains a set of sim-

plices interior to the hull to enable the identification of interior points by

traversal of a line through the interior of the polytope.

Avis’s O ( d nm ) Pivoting algorithm for vertex enumeration of arrang-

ments and polyhedra can be used with modification for the facet enumeration

problem [1]. In the dual space, the algorithm starts at an optimum vertex

and reverses Bland’s pivoting rule to lexicographically backtrack through

the rest of the vertices. The algorithm does not require extra space, and

is output-sensitive. This algorithm may be particularly good, but the only

known implementation in Mathematica makes some space and time trade-offs
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that compromize its efficiency.

Kallay’s incremental ‘beneath-beyond’ algorithm [20] finds the facial graph,

is online, and has complexity O (nbd/2c+1). By identifying vertices as reflexive

and non-reflexive, the algorithm traverses the facial graph from the bottom

up, separating the faces of the hull into three classes and processing as ap-

propriate: faces that belong to the new hull unmodified, faces that must be

deleted, and faces that must make a dimensional step-up to include the new

point added to the hull.

Seidel also developed an incremental algorithm for the facial graph prob-

lem which operates in the dual space [21], with complexity Θ(nbd/2c) for even

d and O (nbd/2c+1 ) for odd d. By separating faces of the dual facial graph

into six colours, each point (dual plane) updates the dual facial graph by a

similar dimensional step-up as used by Kallay’s algorithm.

17



Chapter 4

The Incremental Paradigm

In this chapter we describe a data structure and update algorithm to add a

new point to a convex polytope.

The incremental paradigm was first applied to the construction of non-

planar convex hulls by Dijkstra in The Discipline of Programming [9] for

three dimensions. Dijkstra’s algorithm represents the convex hull as a planar

graph by its set of edges and stores a range of additional information to

facilitate the ordering of the set of edges cyclically around each facet. By a

traversal of this data structure the old edges are deleted and new edges are

added as required for the addition of each new point of the set. Dijkstra does

not give the complexity of his algorthm, but it can be reasonably estimated

as O (n2).
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The incremental paradigm for convex hull construction may appear to

contain a built-in inefficiency, in that it uses less information than is available.

For example, at each stage of construction the convex hull might be updated

to include a point that is not present in the final hull and will be superceded

by later additions. There may be reason to believe that a global approach,

taking all points of the set into consideration at once, may be able to utilize

extra information to perform better.

At the same time, the incremental paradigm recommends itself for three

reasons:

1. It is a conceptually simple approach that can be easily understood

and promises to result in a practical algorithm that can be readily

implemented.

2. An incremental update procedure is the required operation for a solu-

tion to the online problem, when the entire set of points is not known

beforehand and an efficent update is the only practical approach.

3. For many distributions the number of vertices of the hull is O (n), so

an efficient incremental construction may well be the best choice.
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4.1 Data Structure

The data structure that will be used to represent a convex polytope is just

its set of facets P . Each facet F in P will be represented by its d extreme

points from S. Rather than defining a new notation like Vert(F ), in order

to simplify the following discussion we refer to a facet F both as a concept

and as a set of d points from S, as will be clear from the context.

The following information will also be stored for each facet F—its d sub-

facets, pointers to each of its d neighbors, and the equation of its halfspace

equation, which will be denoted as follows:

• SubfF1 , . . . , SubfFd , where each subfacet is represented by a unique com-

bination of d− 1 of the d points of F .

• NeigF
1 , . . . ,NeigF

d , pointers ordered so that SubfFi is shared with NeigF
i

F ∩ NeigF
i = SubfFi .

• HalfF , the inequality of the halfspace bounded by the hyperplane

containing F , and oriented so that S ⊂ HalfF .

The subfacets can be generated in a straightforward manner at minimal

cost. The pointers to neighboring facets will be set by procedures to be

described in the following sections. The up-front ‘cost’ of creating a facet
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F in P is therefore bounded by the cost of creating the halfspace equation,

which we assume can be done in Θ(d3) expected time from the d points of

F by finding the solution to a d× d system of simultaneous linear equations.

That is, if q1, . . . qd are column vectors representing the points of F , and c

is a column vector of any non-zero constant c, we solve

(q1 · · · qd)(x) = (c)

for x and and then represent HalfF in the usual manner by the pair (x, c).

Proper orientation of the halfspace is then ensured, by checking the sign of

the computation < x, p > − c for any point p interior to the convex hull so far

constructed, and if the sign is negative then setting HalfF = (−x,−c). Given

the halfspace equation of a facet, testing whether or not a point p is in HalfF

then takes only Θ(d) time by checking for a positive sign in < x, p > − c.

This will be a common operation throughout the following.

There are of course faster methods for generation of the halfspace equa-

tion, with complexities fractionally less than O (d3), but they have not been

implemented for the following reasons: the complexity of the implementa-

tion for general dimensions; the possibility of loss of precision; and it will

be shown later that the cost of setting the neighbor pointers puts an Ω(d3)

lower bound on the creation of each facet in any case.

The subfacets SubfFi will not be actually stored, and will instead be de-
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fined implicitly by the following convention: The points of a facet

F = {q1, . . . , qd}

will be stored in ascending order by their index in S, and then

SubfFi = F \ {qi}

This convention was implemented and facilitates several Θ(d) operations

later.

Since the remaining data structure (pointers to extreme points, pointers

to neighbors, and halfspace equation) can all be stored in Θ(d) space, this

convention allows us to reduce the storage per facet from Θ(d2) to Θ(d), and

the total storage for a convex hull from Θ(d2m) to Θ(dm), where m is the

total number of facets of the convex hull.

4.2 Updating a Convex Hull

In this section an algorithm is described to implement the operation P ⇐

P ∪ {p} for arbitrary dimension greater than two where P is a convex hull

represented by the data structure given above and p is a new point outside

P . The case when p is inside P will be addressed in chapter 5. One facet K

for which p is not in HalfK is assumed to be known, and it is shown how to

find K in chapter 5.
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The update of a convex hull can be visualized as follows. Imagine that

the facets of the convex hull P are opaque, and that our eye is positioned

at the new point p somewhere outside P . In the most general terms, the

addition of p to P requires the following operations:

1. Delete all facets of P visible from p.

2. Add a set of new facets to P , each containing the new point p.

3. Set all links between neighboring facets to maintain the data structure.

This describes the essential steps of an update procedure in any dimen-

sion. That is, the existing polytope P is split by the update into two sets:

the set of visible facets for which p is not in HalfF that must be deleted be-

cause they do not include the new point p, and the set of nonvisible facets for

which p is in HalfF that will remain because they do include the new point

p.

The set of new facets that must be added to P all contain the new point

p, and so can be thought of as a sort of multi-dimensional cap to cover the

set of visible facets.

Finally, to complete the update and maintain our data structure, we

must ensure that all adjacencies between neighboring facets of the new hull

are recorded.
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With respect to the data structure of P , the update may be broken down

into the following six activities:

1. Identify the set of visible facets V

V = {F | F ∈ P, p 6∈ HalfF }

2. Identify the boundary between the set of visible facets V and the set

of nonvisible facets, which will be a set of subfacets called the horizon

H. Each subfacet f in the horizon is shared by two neighboring facets

of P , one visible facet and one nonvisible facet.

3. Add to P a cap C of new facets with p at the apex, where each facet

in C is defined by the union of p and a subfacet of the horizon:

C = {F | F = f ∪ {p}, f ∈ H }

4. Set all links between nonvisible facets of P on the horizon H and neigh-

boring facets in C.

5. Set all links between neighboring facets of the cap C itself.

6. Delete the visible set V .

Therefore, the update procedure considers four sets of faces

• the set of visible facets V
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• the set of subfacets in H

• the set of nonvisible facets on H

• the cap of new facets C

and two types of links between neighboring facets that must be set to main-

tain the data structure of P ∪ {p}:

• between facets of C and nonvisible facets on the horizon H;

• between facets of the cap C itself.

To efficiently implement the update procedure it is convenient to combine

several steps of the update into one operation, simplifying the operation by

dividing it into two phases. In phase one of the procedure steps 1 through

4 above are performed in one pass: identify the visible set V , identify the

horizon H, create the cap C, and link C to P . In phase two the set of visible

facets V is traversed to perform step 5—interlinking neighboring facets in

the cap C itself. When phase two is complete the visible set V is no longer

required and may be deleted, thereby completing the update.

4.2.1 Phase One

Recall that we assume that one visible facet K is known before the update

begins. Given K, the primary feature of our data structure—links between
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the neighboring facets—can be used to traverse the entire visible set V and

identify it, also identify the horizon H, create the cap C, and link C to the

nonvisible facets of P on the horizon in one operation.

This procedure is performed recursively as a breadth-first traversal of V

as follows. First, put K in V . Then invoke Traverse(K) as described below.

Traverse(K):

• Scan the neighboring facets of K:

– When a neighboring facet G is found to be visible and is not

already in V , then put G in V and recursively Traverse(G).

– When a neighboring facet G is found to be nonvisible then the

subfacet f = K ∩G is a subfacet of the horizon. A new cap facet

T = f ∪ {p} can immediately be created, and T and G can be

interlinked across their common subfacet f .

This procedure is described more completely by algorithm Traverse in

figure 4.1. At the conclusion of the traversal, steps 1 through 4 of the update

procedure are complete, the visible set V has been identified, and the cap C

has been created and linked to the nonvisible facets on the horizon H.

Recall the convention that the points defining a facet shall be stored in

ascending order by index in S and that F ∩NeigF
i = SubfFi . This enables an
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Algorithm Traverse ( F )

for i = 1, . . . , d do

G ← NeigFi

if G 6∈ V then

if p 6∈ HalfG then { G is visible from p. }

V ⇐ V ∪G

Traverse ( G ) { Recurse. }

else

{ Create T = {p} ∪ (F ∩G). }

T ← Create Facet (p, F, G )

NeigTd ← G

j ← Find Common Subfacet ( G, T )

NeigGj ← T

C ⇐ C ∪ T

end if

end if

end for

end Traverse

Figure 4.1: Phase 1 – Identify V and H, Create C, Link C to P .
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Θ(d) time for several basic operations by merge-type procedures, including

Create Facet (excluding creation of the halfspace equation) and interlinking

neighboring facets T and G.

For example, for a given value of i during the operation of Traverse we

know that F ∩ G = SubfFi , and when T is created it is T = SubfFi ∪ {p}.

Therefore if F = (q1, . . . , qd) then

T = (q1, . . . , qi−1, qi+1, . . . , qd, p)

since p is the latest addition to the set and has the highest index in S so far

(note that the same analysis will apply to both the preprocessing and online

cases), an Θ(d) operation.

To interlink facets T and G one can first set NeigT
d = G directly, since by

the above definition of facet T it is clear that T ∩ G = SubfTd . The value of

j such that NeigG
j = F can then be found by an Θ(d) merge-type operation

of the points of G and T by the routine Find Common Facet of figure 4.2.

The complexity of phase 1 as implemented by the Traverse algorithm

can be calculated by dividing the processing into two types: encounters with

visible facets, and encounters with nonvisible facets on the horizon which

cause the creation of a cap facet:

• The first encounter with each visible facet F costs Θ(d) for the test

p 6∈ HalfF . There may be at most d − 1 subsequent visits to F from
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Algorithm Find Common Facet ( F , G )

{ Find j such that SubfFj is shared by F and G. }

j ← 0

a ← 1

b ← 1

do while j = 0

if F (a) = G(b) then

a ← a+ 1

b ← b+ 1

else

if F (a) < G(b) then

a ← a+ 1

else

j ← b

end if

end if

if a > d then j ← d

end

return ( j )

end Find Common Subfacet

Figure 4.2: Finding a common subfacet
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other neighboring facets during the traversal through V , and each such

encounter will be only Θ(1) to determine that F has already been

visited and placed in V . The complexity of this portion of phase one

is therefore Θ(d |V |).

• Each encounter with a nonvisible facet F on the horizon costs Θ(d) for

the test p ∈ HalfF . The subsequent creation of a new cap facet costs

Θ(d3). Linking the new cap facet to the nonvisible facet across their

common subfacet is Θ(d). The complexity of this portion of phase one

of the update is therefore Θ(d3 |C |).

The overall complexity of phase one is therefore Θ(d |V | + d3 |C |).

When phase one is complete it remains to interlink the cap facets with

each other, performed by phase two.

4.2.2 Phase Two

The major remaining requirement to maintain the data structure is the set-

ting of all required links between neighboring facets in the cap C itself.

This procedure must be efficient since there are many more links to be

set between cap facets themselves in phase two than there were between the

cap and the original convex hull P in phase one. Whereas there are exactly

|C | links to be set between C and P in phase one, there are (d− 1) · |C |/2
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links to be set between neighboring facets of the cap in phase two.

Lemma 1 Exactly d − 1 of the neighbors of every cap facet are also cap

facets.

Proof: Consider any cap facet T . Only one subfacet of T does not contain

p, that is, subfacet f = T \ {p}, and f is shared with a nonvisible facet on

the horizon. The other d−1 subfacets of T do contain p, and only cap facets

contain p, so d− 1 neighboring facets of T must be in the cap. 2

A straightforward procedure to interlink neighboring cap facets which

was implemented and uses a kind of ‘scrabble’ sort procedure, described as

follows.

First, store all the subfacets of the facets of the cap corresponding to

unset neighbor links in a two dimensional array, with one subfacet in each

row, where each subfacet is defined by the indices of its d− 1 extreme points

from S in ascending order. In an associated pointer array, carry pointers for

each subfacet to the cap facet it belongs to. Each subfacet in the array will

appear twice, once for each of the two cap facets that have it in common.

Sort the array in row major order, sorting the pointer array at the same

time. At the conclusion of the sort the array will be a list of duplicate rows,

1 and 2, 3 and 4, 5 and 6, etc., where each pair of rows is a pair of identical
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subfacets shared by two neighboring cap facets. All that remains is to scan

the pointer array and interlink each successive pair of cap facets across their

common subfacet.

The above procedure is simple and can be implemented to run very

quickly with an efficient sorting utility in Θ(|C | · log |C |) expected time, but

has a major drawback that mitigates against its use and led to the search for

an alternative approach, i.e., the procedure requires Θ(d2 |C |) extra storage

at Θ(d) storage for d − 1 subfacets of each cap facet. Since the major con-

straint on the construction of many convex hulls is space this scrabble sort

procedure was dropped in favor of the following procedure.

A better approach that avoids the requirement of extra storage sets each

required link between neighboring cap facets by walking a circuit of neigh-

boring facets in P that all contain the same subsubfacet. First, note that

such a circuit exists.

Lemma 2 There is a circuit of neighboring facets in a d-polytope P around

each subsubfacet of P .

Proof: Consider any subsubfacet φ contained in any facet F . Now, φ is

defined by d− 2 points so in one lower dimension is a subfacet of the (d− 1)-

polytope F and therefore contained in exactly two facets f and g of F by

theorem 3. But f and g are really subfacets in P , so φ is contained in
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exactly two subfacets of F . This implies that exactly two of F ’s neighbors

also contain φ. The same argument holds for each of these two neighbors

(exactly two of their neighbors contain φ), so the path through neighboring

facets around φ is one-dimensional. The path must be closed because the

number of facets of P is finite. 2

Figure 4.3 shows two examples of a subsubfacet circuit, one around the

point of a portion of a 3-polytope, and one around the edge of a portion of

a 4-polytope.
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Figure 4.3: Subsubfacet Circuits in <3 and <4

Note that no claim is made that the circuit around a subsubfacet is unique

or that other disjoint circuits may not exist, although convexity does imply
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it. It suffices for our purposes that at least one such circuit exists.

These circuits can be used to interlink the neighboring facets of the cap as

follows. For each facet T of the cap with NeigT
j = ∅, find the neighboring cap

facet U that shares SubfTj by walking a subsubfacet circuit as follows—refer

to figure 4.4 for an example in <3:

1. Now, T is a facet of the cap, so T = f ∪ {p} where f is a subfacet of

the horizon shared by a visible facet F and nonvisible facet G. Now

p is contained in SubfTj so we can write SubfTj = φ ∪ {p} where φ is a

subsubfacet in f . By inclusion φ must be contained in F and G, so F

and G are two neighboring facets on a circuit around φ. Start walking

this circuit around φ starting at F and moving through the visible set

V .

2. Since the circuit crosses the horizon at f it must cross it again. Stop

when the first nonvisible facet Z is found and let the previous (visible)

facet be Y . Now Y and Z share a subfacet y in the horizon, so there

must be a cap facet U = y ∪ {p} linked to Z across y.

3. Now φ is contained in Y and Z, so φ is contained in y and U . But p

is in U as well, so φ ∪ {p} is in U . But SubfTj = φ ∪ {p}, so U shares

SubfTj with T . Interlink T and U across SubfTj .
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This procedure is performed by algorithm Interlink of figure 4.5. The two

pointers Visible NeighborT and Nonvisible NeighborT are two extra point-

ers attached to each facet that are set by Create Facet when T is created.

Next Facet finds the next facet in the circuit by an Θ(d) merge-type op-

eration on the points of F , G, and φ (see procedure Rotate in appendix

A). The facets T and U can then be interlinked by O (d) invocations of

Find Common Facet.

There are d− 1 neighbor links to be set for each cap facet in phase two,

and two links are set by each invokation of Interlink, so the procedure must

be performed exactly |C |(d − 1)/2 times in all to completely interlink all

neighboring facets of the cap.

The overall complexity of phase two of the update can be found by di-

viding the processing performed by the Interlink algorithm into two types:

processing charged to facets of the visible set V during traversals around

subsubfacet circuits, and processing charged to facets of the cap C at the

end of each traversal, as follows:

• Each traversal of a subsubfacet circuit is through the visible set V , and

each step in the circuit takes Θ(d) time. Now, a subsubfacet is defined

by d− 2 points, so each facet contains (dd−2) = Θ(d2) distinct subsub-

facets. Therefore, there can be at most O (d3|V |) processing of facets
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Algorithm Interlink ( T, j )

φ ← SubfTj \ {p}

F ← Visible NeighborT

G ← Nonvisible NeighborT

while F ∈ V do { Walk around φ. }

X ← Next Facet ( F, G, φ ) { An O(d) operation. }

G ← F

F ← X

end while

l ← Find Common Facet( G, F )

U ← NeigFl

NeigTj ← U

l ← Find Common Facet( T , U )

NeigUl ← T

end Interlink

Figure 4.5: Interlinking Neighboring Cap Facets.
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of the set V by Interlink in phase two, since each facet/subsubfacet

pair defines a unique circuit.

• The remaining processing performed during phase two is the actual

interlinking of neighboring cap facets at the end of each traversal. Each

pair of links costs Θ(d) to set by Find Common Facet, and d− 1 links

must be set for each facet in C, for an overall complexity of Θ(d2|C |).

The overall complexity of phase two as performed by algorithm Inter-

link is therefore O (d3 |V |+ d2 |C |). This may not appear to be a major

improvement over the scrabble sort method, but we shall see that it works

suprisingly well in practice, and it facilitates the following presentation of the

overall complexity of the update algorithm without requiring extra space.

4.3 Overall Complexity

The complexity of phase one is

Θ(d |V | + d3 |C |).

The complexity of phase two is

O (d3 |V |+ d2 |C |)

and the cost of deleting the visible set V at the conclusion of the update is

minor. The overall complexity for all processing performed during an update
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Algorithm Update ( P, p, K )

V ⇐ ∅

C ⇐ ∅

Traverse ( K ) { Phase 1. }

for each T ∈ C and NeigTi = ∅ { Phase 2. }

Interlink ( T, i )

end for

P ⇐ P \ V { Clean-up. }

end Update

Figure 4.6: Update P with point p.

is therefore

O (d3 |V |+ d3 |C |)

Fortunately, the d3|V | term can be amortized away by the following argu-

ment.

The original cost to create each facet F of the visible set is already as-

sumed to be Θ(d3) to create the halfspace equation HalfF , and the entire

visible set V is deleted at the end of the update. The one-time O (d3) cost

per facet of V incurred during the update can therefore be charged to its

original creation, thereby amortizing this term away and leaving an overall

update complexity of Θ(d3|C |) in the size of the cap C.
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This amortization is possible because of the assumption that creation

of a halfspace equation is an Θ(d3) operation, even though more sophisti-

cated techniques of solving systems of linear equations are available with

fractionally better performance. For our purposes these faster methods are

not useful, at least with regard to improving the complexity of the update,

since the O (d3|V |) cost incurred during phase 2 depends on the complexity

of the subsubfacet traversals and would not be reduced by a faster procedure

of calculating halfspace equations.

However, it will be shown later that for some distributions of points the

expected complexity of subsubfacet traversals is less than O (d3|V |), and

that a space/time trade-off can then reduce the expected complexity of the

update for these sets to Θ(d2|C |).
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Chapter 5

Preprocessing and Online

Constructions

In this chapter two methods are described to construct convex hulls with the

data structure and update algorithm of the last chapter.

The first method is appropriate for the case when the entire set of points S

is known beforehand and can be preprocessed with a lexicographic sort. This

appraoch was first used by Seidel for his dual-space incremental algorithm.

The second method can be used for the online problem when the points

arrive one by one from an external source and the convex hull must be quickly

generated from the existing convex hull and each new point as it arrives.

For this problem a Two-Flat algorithm is described to traverse a circuit of
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neighboring facets in the hull in order to identify interior vertices, and to

supply a first visible facet K to start the update when the new point is an

exterior point.

5.1 The Preprocessing Case

When the set of points S is entirely known and can be preprocessed, the con-

vex hull of S can be constructed almost directly by the successive invocation

of the update algorithm for each point of S in turn.

The procedure starts with an initial simplicial convex hull P which can

be easily generated from the first d + 1 points of the set S. We are gau-

renteed that this first convex hull will have positive volume and is therefore

nondegenerate, since no d+ 1 points of S lie in the same hyperplane by our

assumption of general position; in other words, absolutely any d + 1 points

of S will form a simplex of dimension d. The procedure is straightforward,

amounting to no more than the construction of a d-simplex with links to

neighboring facets set appropriately, in Θ(d4) time (see Create Simplex in

appendix A).

Given the first simplicial convex hull P , the complete convex hull can

be built by adding the remaining n − (d + 1) points to P , one by one, with

the update algorithm of the last chapter. But first the set must be pre-
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processed to facilitate the subsequent construction. Fortunately, this step is

not complex, and can be carried out just by sorting the set S lexicographi-

cally. This can be done quite efficiently by any of a number of library sorts,

but we chose a particularly fast implementation of Sedgewick’s quicksort [19].

The expected complexity is therefore O (n log dn) with a very small constant,

greatly dominated by the remainder of the algorithm, and can be considered

to be practically free for all but the most trivial problems.

This preprocessing step is required to satisfy the two conditions of an

update:

1. Each new point p to be added to P is known to be exterior to the

polytope, so that the update is actually required; and

2. A first visible facet K is known to start the breadth-first search of V

in phase one of the update.

The lexicographic sort of S can be shown to ensure that each new point

to be added to the hull is outside the convex hull so far constructed, i.e.,

point pi is gaurenteed to not be in conv (p1, . . . , pi−1) for every i, by the

following observation. When the set of points S is sorted in lexicographic

order a hyperplane can always be found that separates pi = (xi1, . . . , xid)

from the set of points {p1, . . . , pi−1}, thereby guarenteeing that pi is not

interior to conv (p1, . . . , pi−1). Assuming that no two points share the first
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coordinate, this separating hyperplane may be directly given as the one with

first coordinate equal to xi1. In the case that up to at most d − 1 other

points do share first coordinate with pi, then the hyperplane can always be

perturbed slightly to achieve the same result. Therefore, after the sort, no

point lies inside the convex hull of the points preceeding it.

This preprocessing step also satisfies the second condition, ensuring that

a first visible facet K from the existing convex hull P can be found to begin

phase one of the update. This can be seen to be satisfied by considering that

at least one facet of the cap C created during the update P ⇐ P∪{pi−1}must

be visible with respect to the current point pi. That is, the line segment pi−1 pi

must intersect conv (p1, . . . , pi−1) in only one point due to their lexicographic

ordering, namely pi−1, so pi−1 must be visible from pi. Convexity then implies

that no vertex of a convex hull can be visible from some other point in space

without at least one facet containing that vertex also being visible, so it

follows that at least one facet of P containing pi−1 is also visible from pi.

But the facets of P containing the point pi−1 are exactly those facets of

the cap C created during the previous update P ⇐ P ∪{pi−1} (as also noted

by Seidel [23]). For any given update P ⇐ P ∪ {pi−1}, the first visible facet

K can then be identified in either one of two essentially equivalent ways:

• Check each facet of the cap as it is created for visibililty with respect
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to the next point of the set, for i = d+ 2, . . . , n− 1, or

• Keep the cap C from the previous update to be scanned for a visible

facet as the first step of the next update.

As a matter of clarity of presentation the second approach is preferred,

but for efficiency of implementation the first approach was used. In either

case, the identification of the first visible facet K is at most an O (d|C |)

operation in the size of the previous cap C. This cost may be charged against

and subsumed by the original O (d3|C |) cost to create the cap C in the first

place, thereby amortizing the cost away.

The preprocessing construction is shown in figure 5.1. Before the first

update of the point pd+2 the facets of the initial simplicial polytope are

assigned to the cap C, thereby ensuring that a first visible facet K for the

first update can be easily found by checking all d + 1 facets of the initial

simplex.

The remaining points of the set can then be simply added to P one by

one and the cap C passed forward each time to provide the first visible facet

for the next update, until every point has been added and the final convex

hull P = conv (S) is completely generated.
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Algorithm Preprocessing Construction ( S, d, n, P )

Sort ( S ) { In lexicographic order. }

P ⇐ conv (p1, . . . , pd+1)

C ⇐ P

for i = d+ 2, . . . , n do

F ← Scan Cap ( C ) { Find a facet visible from pi. }

V ← ∅ { Re-initialize. }

C ← ∅

Update ( P, pi, F )

end for

end Convex

Figure 5.1: Preprocessing Construction
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5.2 The Online Case

The online problem is by its nature essentially a real-time problem, where

the points of the set S arrive one at a time from an external source and we

wish to maintain the convex hull of the points so far received.

With a sufficiently fast algorithm, abundant resources, and sufficiently

large interarrival rate, it might well be possible to reconstruct the convex

hull from scratch after the arrival of each new point, thereby providing an

acceptable ‘pseudo-online’ solution that solves a series of apparently unre-

lated convex hull problems of sizes 1, 2, . . . , n. For any combination of al-

gorithm and resources, however, there will be a potential case where for a

sufficiently large number of points n and sufficiently short interarrival rate

this procedure will be insufficient, that is, too slow. It is the always possible

existence of such a case that provides the rationale for the requirement of a

true online algorithm, an algorithm that can update the existing convex hull

quickly without complete preprocessing.

We assume that at least d + 1 points of the incoming set S are known

from which an initial nondegenerate simplicial convex hull P of dimension d

can be created in the same manner used to construct an initial hull for the

preprocessing construction by Create Simplex, after which any finite number

of new points arrive in arbitrary order.
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Before beginning, the two assumptions upon which the update algorithm

relies must be satisfied, given below in a slightly different form:

1. Each new point p that arrives can be identified as interior to P and

discarded, in which case the update isn’t required;

2. If p is an exterior point then at least one visible facet K can be found

in acceptable time to begin the update.

In other words, when p is interior to P , which can certainly occur when

the points arrive online and may lie anywhere in space, then the event needs

to be identified to avoid the update, and when p is exterior to P a first visible

facet K is required to begin the search of the visible set V in phase one.

Algorithm Online Update ( P, p)

F ← Two Flat ( P, p ) {Find first visible facet.}

if F 6= ∅ then { p is exterior to P . }

Update ( P, p, F ) { Update P . }

end if

end Online Update

Figure 5.2: The Online Update

The algorithm used to satisfy the first condition will also satisfy the sec-
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ond condition.

With regard to the second condition, it is particularly important to be

able to find the first visible facet K without having to process a significant

proportion of the facets of the existing convex hull P , an approach that

would be very costly with a complexity that would quickly approach the

cost of reconstructing the convex hull from scratch, thereby invalidating the

rationale for having an online procedure. Therefore an efficient method of

finding the first visible facet K is required that avoids an examination of all

facets of the existing hull.

The method of solving this problem used in the last section for the pre-

processing case is clearly not applicable here, since there is no guarentee that

a facet of the cap created by the previous update will be visible from the new

point under consideration. The new point may be able so see many facets of

P , only one facet of P , or, if an interior point, no facets at all.

Given a new point p and a polytope P , both conditions can be satisfied by

a Two-Flat algorithm which traverses a circuit of neighboring facets defined

by the intersection of P and a 2-flat. The method was developed because

it appeared to have potential for efficient implementation and performance,

and is shown later to work well for dimensions greater than four.

First, note that the intersection of a 2-flat and a d-dimensional convex
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hull P produces a circuit of neighboring facets.

Lemma 3 The non-empty intersection of a 2-flat Q with the interior of a

d-polytope P is a circuit of neighboring facets in P .

Proof: Let F be any facet of P intersected by Q. Assuming nondegeneracy,

the intersection of a 2-flat and a (d − 1)-flat is a 1-flat, so the intersection

of Q with F is a line segment and the two endpoints of this line segment lie

in two of the subfacets of F . Therefore Q intersects exactly two neighbors

of F . The same analysis holds for each of these two neighbors and their

neighbors in turn, so the instersection of Q and P defines a one-dimensional

path. Since the number of facets of P is finite the path is closed. In fact, the

intersection is a convex polygon. 2

A 2-flat circuit is particularly useful to satisfy the two update require-

ments when it is defined so that the 2-flat Q passes through both the newly

arrived point p and some known facet F of the existing convex hull. Let us

define Q in this manner and then traverse the resulting circuit of neighbor-

ing facets, beginning at the first facet F and proceeding in either direction,

and examining each facet in the circuit when encountered for visibility with

respect to the new point p. The traversal must then have one of two possible

outcomes:
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• The circuit completes, returning to the starting facet F without having

found any facet in the circuit that is visible from p; or

• Some facet in the circuit is found to be visible from p.

In the first case we can conclude that the new point p lies entirely inside

the convex hull P , and therefore may be discarded. This follows directly

from the following observation: the two-dimensional polygon formed by the

intersection of Q and P lies entirely inside P , and if all facets in the circuit

are nonvisible from p then p is interior to the polygon.

In the second case the new point p is clearly outside the convex hull P

since a facet of P has been found that is visible from p. The traversal may

then be terminated and the visible facet, say K, passed back to the main

algorithm to begin the search of the visible set.

This procedure is described more precisely by the following:

Two-Flat Algorithm:

1. Define a 2-flat Q passing through points p, q, and r, where p is the

new point, q is the centroid of the first facet F in P , and r is any other

point not on the line pq. Walk the circuit defined by Q, starting at F ,

in either direction. Stop when either

(a) A facet K in the circuit is found to be visible from p, in which

case return K; or
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(b) The walk returns to F , in which case return ∅.

The creation of the 2-flat Q and the visibility tests for each facet in the

circuit are straightforward. The primary operation required for the imple-

mentation of the traversal is the movement from one facet to the next, which

can be carried out in Θ(d3) time as follows.

Say F is the current facet in the circuit. Then there are d candidate

neighboring facets of F to be visited next. Exactly two of F ’s neighbors are

also intersected by Q and one of these neighbors has just been visited before

proceeding to F , so there are d − 1 candidate neighbors of F to be visited

next.

If the next facet in the circuit is facet G then F and G share a common

subfacet with a non-empty intersection with Q. Unfortunately, no Θ(d)

merge-type procedure can be employed here to find this subfacet. We must

find G by examining each of the d− 1 candidate subfacets of F to determine

which one is intersected by Q.

The primary operation of the 2-flat circuit traversal is therefore a test

to determine whether or not a subfacet has a non-empty intersection with a

2-flat, which can be carried out as follows. The 2-flat Q is defined by three

points p, q, and r as described above. A given subfacet of F , say f , is defined

by d− 1 points. If Q intersects f then the intersection will occur in a point,
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and there will be a convex combination of the points defining f that define

that point and an affine combination of the points defining Q that define the

same point. There will always be a point of intersection between aff(f) and

Q. Therefore, by finding the point of intersection between aff(f) and Q and

then checking to see if that point falls within f itself (that is, is not only an

affine combination but also a convex combination) the test for intersection

will be complete.

This test may be carried out by solving a system of simultaneous linear

equations AX = B, where A and B are defined as follows. Without loss of

generality, let the subfacet f be defined by the points p1, . . . , pd−1, and let

each of these points be a column vector represented by its coordinates. Let

p, q, and r be the points defining the 2-flat Q, these points also being column

vectors represented by their coordinates. The point of intersection between

aff(f) and Q can then be found by solving the following (d + 2) × (d + 2)

system of simultaneous linear equations for X∗

∗Thanks to Wm. Knight for the formulation of this SSLE.
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p1 · · · pd−1 −p −q −r

1 · · · 1 0 0 0

0 · · · 0 −1 −1 −1

X = 0

...

0

1

−1

The first d− 1 coordinates of X are the coefficients of the combination of

the points of f defining the intersection between aff(f) and Q. The last three

coordinates of X are the negative of the coefficients of the combination of

the points of Q defining the same point of intersection. The first d rows of A

and B assure that both combinations define the same point of intersection,

that is, that when they are subtracted they leave the origin. The last two

rows of A and B assure that both combinations are indeed affine.

The actual point of intersection is of little interest. After finding X it

remains to determine whether or not the intersection point lies not only in

aff(f) but in f itself, which may be done by determining whether or not the

first d− 1 coordinates of X are all positive; if so, then the 2-flat Q intersects

f itself, if not, then it doesn’t.

Finally note that checking to see if the last three coordinates of X are all

positive is insufficient, since the point of intersection in Q is irrelevant to the
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test.

The expected average complexity of each step in the 2-flat circuit is there-

fore Θ(d4) for Θ(d) tests to make at Θ(d3) per test. This complexity can be

reduced by a factor of d, since each subfacet tested differs from the one before

by only one point, and changing any single row or column of an SSLE and

finding the new solution can be done in only Θ(d2) expected time. Instead of

recalculating a new solution to a new SSLE up to d−1 times, we can instead

solve the first SSLE as usual and then generate each of the up to d−2 subse-

quent solutions by changing the appropriate column of the matrix A in Θ(d2)

time. This revision would reduce the average expected complexity of each

step in the 2-flat circuit from Θ(d4) to Θ(d3). This revision was implemented

but no significant savings were observed, at least for the sets studied, since

the revised method had somewhat more overhead. In any case the length of

each circuit will be shown later to be relatively short in higher dimensions

with a minor cost for d ≥ 5. The original Θ(d4) method was therefore re-

tained for its greater precision. Nevertheless, it is expected that the revised

approach could be of significant value for very large n and sufficiently high

d.
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5.3 Building the Facial Graph

Finally, note that the facial graph G can be generated from the set of facets

of a convex hull P in a straightforward manner in Θ(|G | log |G |), as follows.

First, put the highest dimensional face P in the facial graph, then add

the facets with pointers to P . Add the subfacets of each facet to G with

pointers to the facet in which they are contained, unless the subfacet has

already been added in which case only add the pointer. Repeat this process

for each k-face for subsubfacets through edges, adding its (k − 1)-faces to

G with pointers to the k-face it is contained in, unless it is already in G in

which case just add the pointer. Finally, point the empty set at each vertex.

The major operation at the consideration of each k-face f is therefore the

determination of whether or not f has already been added to G, and if so its

position in G, which can be done in Θ(log |G |) time by the usual methods.
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Chapter 6

Results

In this chapter we discuss implementation issues, behavior of the algorithms

for the generation of convex hulls of points from spherical distributions and

cyclic polytopes, behavior of the Two-Flat algorithm and conjectured com-

plexity, performance of the Interlink procedure, space considerations, an ap-

plication, and related matters.

6.1 Implementation Issues

The algorithms were initially implemented in Fortran, since the bulk of the

processing is mathematical. However, the language is unwieldy for involved

programming, so the software was ported to PL/1 which supports recursion,

pointer based variables, and various other programming advantages. APL
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was considered but found unsuitable for obtaining timing results.

Although not as widely used as some other programming languages, PL/1

is exceptionately well supported with optimizing compilers, interactive de-

buggers, a large library of mathematical and array functions, and remains

among the best of the third generation languages if you can pretend that

there are only two numeric data types—fixed binary and float binary. Its

only serious drawbacks would seem to be a fashionable fixation with semi-

colons and the lack of an endif statement. It has, for example, done at least

one thing that many have lamented Fortran never did—learned from APL

and introduced array operations, as in

a ( i, * ) = sum ( b ( j, * ) + c ( *, k ) )

This has the obvious advantages of making code much shorter, much clearer,

and therefore more robust.

On the other hand, the unusually limited portability of PL/1 compilers

makes the software difficult to use outside an IBM environment. This draw-

back has been partially alleviated since the preprocessing algorithm has been

translated to the programming language C and linked with a three dimen-

sional graphics package by Gupta [13]. We expect to translate the online

algorithm into C as well, so that the software will be accessible from any

package with access to C procedures to make it available on a wide range of
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non-IBM systems.

Most of the runs were done on an IBM-3090. A few in higher dimensions

were done on an IBM-9121 which was found to be between 23 and 25 percent

faster for the algorithms presented here, and so the timings were adjusted

accordingly. All timings are given in seconds. Vector processing was not

used. All data shown is obtained from single runs—that is, they are not the

result of several runs that have been averaged, thereby showing the stability

of the algorithm and the data collected.

The generation of cyclic polytopes is investigated later in section 6.3,

where it is shown that they present precision problems. More extensive in-

vestigation is made of two distributions we will call distribution A and B,

where A is drawn from points uniformly distributed on the surface of a d-

sphere centered around the origin and distribution B is drawn from a sets of

points uniformly distributed inside the same d-sphere, as two representative

distributions of convex hulls of sets in general position. Whenever we speak

of spherical distributions in general we mean sets of points from any inde-

pendent distribution of points around the center of a d-sphere—for example,

normally distributed.

Each point of these sets was generated by first setting each coordinate

equal to a normally distributed random variable centred at zero and then
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normalizing the vector to length one. The vector of a point generated in this

manner then has a uniformly random direction around the origin. For distri-

bution A, the vector was then given a length of 100, to uniformly distribute

the points on the surface of the sphere. For distribution B the vector was

given a length of 100 and then multiplied by u1/d, where u is a uniformly

distributed variable between zero and one, to uniformly distribute the points

throughout the interior of the sphere.

The accuracy of the implementation of the algorithms was tested as fol-

lows. First, known convex hulls in three and four dimensions were generated.

Second, the convex hulls were found to be the same for the same set S whether

generated by the preprocessing algorithm or the online algorithm. Third, the

minimum angle between the normals of adjacent facets was calculated to as-

sure that the software was actually returning convex objects.

6.2 Behavior in Practice

Before assessing the practical utility of the algorithm, what is the optimal

possible performance? In theory, an optimal construction of a convex hull

with m facets would be only Θ(dm), assuming a minimum cost of Ω(d) on

the generation of each facet.

Since the worst case, cyclic polytopes, have a very large number of facets
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m = O (nbd/2c), we might expect convex hulls from other distributions to

grow rapidly with the dimension as well. This is intuitively plausible, since

it might be expected that there are more ways for points to be adjacent

and connected to other points in the set in higher dimensions than in lower

dimensions.

On the other hand, Dwyer [10] has noted that a surprisingly large num-

ber of ‘average’ distributions have only m = O (n), including the spherical

distributions A and B and other uniform distributions in figure 6.1.

Uniform Distributions m Ref.

on sphere (A) Θ(n) [6]

in sphere (B) Θ(n(d−1)/(d+1)) [18]

in any polytope Θ(logd−1 n) [10]

in any convex body O (n(d−1)/(d+1)) [3]

Figure 6.1: O (n) distributions.

This suggests that for fixed d an optimal convex hull algorithm for spher-

ical distributions would be only Θ(n). However, for both distributions A and

B the number of facets m is heavily influenced by the dimension d. Buchta

[6] has shown that the expected number of facets m for distribution A is

2

d
γ(d−1)2 γ

−(d−1)
d−1 n(1 + o(1))
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while, for distribution B, m is

2

d
γ(d−1)2 γ

−(d−1)
d−1 v(1 + o(1))

where v is the number of vertices of the hull and

γx =
Γ(x+ 1)

2x+1((Γ(1 + x
2
))2

For both distributions m goes to infinity very quickly, if somewhat more

slowly for distribution B than for distribution A. Some values are given in

table 6.1 as calculated from Maple for the values of Buchta’s equations.

d 2
d
γ(d−1)2 γ

−(d−1)
d−1 ≈

3 2 2

4 24
35
π2 6.77 · 100

5 286
9

3.17 · 101

6 1296000
676039

π4 1.87 · 102

7 12964479
10000

1.30 · 103

8 3442073600000
322476036831

π6 1.03 · 104

9 4155610296921974
45956640625

9.04 · 104

10 10083790436267520000000
109701233401363445369

π8 8.72 · 105

Table 6.1: Values for Buchta’s equations.

Using Stirling’s formula

x! ≈
√

2πx
(
x

e

)x
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with relative error (from [16]) of

(
1 +

1

12x
+

1

288x2
− 139

5140x3
+ O

(
1

x4

))

we can approximate γx as

√
2πx(x/e)x

2x+1 [
√
πx(x/2e)x/2]

2

simplifying to
√

2πx(x/e)x

2x+1πx(x/2)xe−x
=

1√
2πx

We can then approximate

2

d
γ(d−1)2 γ

−(d−1)
d−1 where γx =

Γ(x+ 1)

2x+1((Γ(1 + x
2
))2

for odd dimension d as

2

d

1√
2π(d− 1)2

 1√
2π(d− 1)

−(d−1)

=
2 · (

√
2π(d− 1))d−1

d · (d− 1)
√

2π

=
2 · (
√

2π)d−1 · (d− 1)(d−1)/2

d · (d− 1) ·
√

2π

=
2 · (
√

2π)d−2 · (d− 1)(d−3)/2

d

with some constant error. A similar caluclation can be made for even d.

The actual number of hull facets m for convex hulls from distributions

A and B and dimensions three through ten is shown in figure 6.2. In di-

mensions three through six m is within ten percent of the number predicted
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by Buchta’s equations for distribution A. For larger d, the number of facets

m is somewhat less than predicted by Buchta’s equations due to a delay in

asymptotic behavior for values of n that are relatively low for the dimension.

The number of facets m is slightly greater for distribution A in lower

dimensions, since for distribution B the number of vertices v of the convex

hull is less than n. This comes from a result by Raynaud [18], who showed

that the expected number of vertices of a convex polytope drawn from distri-

bution B is O (n(d−1)/(d+1)). The actual number of vertices v for convex hulls

from distribution B is shown in figure 6.3. For an actual set of 1600 points

in <6 the number of vertices is 1189.

The similarity between distributions A and B in higher dimensions has

been called the orange-peel phenomenon, where the percentage of orange in

the peel goes up as the orange gets larger. That is, keeping the number

of points n and the radius of the sphere r constant, the percentage of the

sphere in an outer layer of constant width increases exponentially with d.

Therefore, for any given n, there is a dimension d where all n points of a set

from distribution B can be expected to be vertices of the final convex hull.

One might say that as the dimension increases, distribution B draws closer

to distribution A.

This data points out the primary challenge to the efficient construction

64



Figure 6.2: Hull Facets: m by n.
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Figure 6.3: Extreme points: v by n.

of convex hulls from these distributions or any spherical distribution where

the number of vertices v draws closer to n as the dimensions rises—the very

large output size compared with input size. We can expect that even an

optimal algorithm with Θ(dm) complexity will quickly be bound by space

before time if the output is to be stored.

The online memory available for the collection of the data presented here

was limited to 32 megabytes. After overhead, 24 megabytes of memory was

available for storage of the convex hull data structure. For dimensions seven

through ten and distributions A and B, convex hulls were generated approx-
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imately as large as could be generated within this bound.

6.2.1 Preprocessing Constructions

We now discuss the behavior of the preprocessing algorithm for sets of points

from distributions A and B and dimensions three through ten.

Throughout we assume that the O (dn log n) complexity of the prepro-

cessing of the set of points S by lexicographic sort is negligible and may be

ignored. This term is greatly dominated by the number of facets m that are

processed by the rest of the algorithm. Furthermore, rather than link in an

external sorting utility, the optimized quicksort recommended by Sedgewick

[19] was implemented. Sedgwick’s algorithm has an extremely short inner

loop—test and increment—and therefore an unusually small constant. Even

in three dimensions this preprocessing step typically takes a small fraction

of one percent of the overall processing time.

The cpu timing results for the preprocessing construction of convex hulls

of sets from distributions A and B are shown in figure 6.4. The performance

of the construction for these sets seems to be close to linear in n. This can

be considered fairly efficient, at least for distribution A, suggesting that the

algorithm has time within a constant multiple of n for fixed d.

In lower dimensions for distribution B, where the number of vertices and
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Figure 6.4: Timing results: Cpu-time by n.
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facets is less than O (n) the algorithm cannot be considered as good. In fact,

one might say that this algorithm is output-size insensitive, since the timing

results are very similar for both distributions without regard to the number

of facets in the final hull.

The behavior of the algorithm suggests a constant time update for fixed

d, or, at least, an overall constant time update for both distributions A and

B. Notwithstanding the evidence of the timing results, that this should be

so is not obvious, since it implies that the average cost of adding a point to

a convex hull in this manner is constant for fixed d, unrelated to the number

of points n.

Consider the nature of the caps Ci created during the preprocessing con-

struction of sets from distribution A or B. Without loss of generality, we may

assume that no point of S shares the first coordinate with any other point,

so that the lexicographic ordering is equivalent to a sort on first coordinate

x1. Each intermediate convex hull Pi = conv (p1, . . . , pi) is then the convex

hull of the subset of S on one side of a (d − 1)-dimensional halfplane H,

orthogonal to x1 and passing through pi. As the halfplane H is moved along

the first coordinate, then each new point added to the hull is the extreme

point of a d-dimensional hemisphere.

For example, for distribution A each intermediate hull Pi would be the
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convex hull of a set of points uniformly distributed on the curved surface of

the hemisphere as defined above. That is, Pn/4 would be the convex hull of

a set of n/4 points uniformly distributed on the curved surface of (a little

more than) a quarter sphere, Pn/2 would be the convex hull of a set of points

uniformly distributed on just about a half sphere, and P3n/4 would be the

convex hull of a set of points distributed uniformly on the curved surface of (a

little less than) a three-quarter sphere. For distribution B, each intermediate

hull would be the convex hull of a set of points distributed uniformly inside

a similar sequence of hemispheres.

There are therefore two types of points added to the hull. For distribution

A each new point pi is of the first type, uniformly distributed on the boundary

between the curved and flat sides of the hemisphere Pi. In the limit for

distribution B, O (n(d−1)/(d+1)) of the additions will be vertices of the first

type, and the remainder will lie on the flat side of the hemisphere.

A plausible conjecture would then be that the local neighborhood of each

of type of vertex would be similar, that is, the average number of facets in

the caps of type one vertices would be similar, and the average number of

facets in the caps of type two vertices would be similar. This is what we find

overall, at least for dimensions three through six, where the average number

of facets a is shown in figure 6.5 and can be seen to be almost constant for
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fixed dimension d. Furthermore, a does not differ much between distributions

A and B. For d > 6, asymptotic behavior has not yet set in, although it can

be seen to be starting in <7.

This analysis leads to the following measure of efficiency for preprocessing

constructions of convex hulls from distribution A. From Buchta we know that

the expected number of facets of a set of n points is

m = c n

where c is constant for fixed d as defined in section 6.2. The complexity of

a preprocessing construction of conv (S) is a function of the total number of

facets t that are created, and

t = d+ 1 +
n∑

i=d+2

|Ci | = O (na)

The total number of facets t created for example sets from distributions

A and B are shown in figure 6.6, where they can be seen to be close to

linear in n. By comparing the total number of facets t with the size of the

output m with the relation n × t/m in figure 6.7, it can be seen that the

algorithm performs much better in lower dimensions for distribution A than

for distribution B. For distribution A the total number of facets t is no more

than 2 dm, at least for the sets studied. In other words, the average cap

size for the preprocessing construction of convex hulls from distribution A

for these sets is O (2dc), or up to about 2d times optimal.
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Figure 6.5: Cap sizes: a by n.
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Figure 6.6: Total facets: t by n.
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Figure 6.7: Relative efficiency: t/m by n.
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Finally, a purely empirical but practical measure of the efficiency of the

algorithm is the relation n × cpu-time/m which measures the time in seconds

required for each facet in the output, shown in figure 6.8.

By this measure, the algorithm is much more efficent for distribution

A than for B, taking much less time per facet of the final hull for the sets

studied. On the other hand, the tendency appears to be towards equivalence,

since the cost per facet for distribution B actually goes down as the dimension

goes up, caused by the tendency of distribution B to act like distribution A in

higher dimensions. That is, for constant n, the times for both distributions

will approach each other as the dimension rises.

6.2.2 Online Constructions

In this section we discuss the behavior of the online construction of sets

of points from distributions A and B and dimensions three through ten,

including timing results and expected complexity, the number of total facets

created, and related matters.

First behavior of the Two-Flat algorithm is discussed, used to identify

interior vertices or a first visible facet as required for an incremental addition

of each new point.

For each invocation of the Two-Flat algorithm for each point the 2-flat
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Figure 6.8: Time per facet: Cpu-time/m by n.
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Q was defined by three points—the new point, the centroid of the first facet

F stored in the facet list, and the centroid of the closest neighboring facet

G of F to pi. Because a 2-flat can intersect the centroids of two neighboring

facets without intersecting their common subfacet, Q was then shifted so

as to assure it would. Finally, no circuit was followed past halfway or 180

degrees, since it would then complete and the point is guaranteed to be an

interior point, thereby removing up to a factor of 2 from the length of a

traversal when the new point is inside P . That is, if p is the new point, q is a

point on the 2-flat in the first facet in the circuit, and r is a point on the 2-flat

in the i’th facet in the circuit, then when the sign of triangle 4pqr changes

the point p must be inside the polytope and the traversal is terminated.

The complexity of the algorithm remains open. Several avenues of anal-

ysis were explored to obtain an upper bound. The worst case was chosen for

simplicity, which for distributions A and B would be where the 2-flat cuts

through the centre of the sphere and the number of facets that are involved

in the intersection can be expected to be greatest.

The first approach to the analysis involved projecting the set of points

S onto the 2-flat, and then bounding the number of facets by bounding the

number of points within a certain distance of the boundary of the circle.

Since the number of points close to the boundary goes down with d this
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approach was at first thought promising, but an appropriate distance was

not found.

Another avenue tried to measure the expected length of the segment

formed by the intersection of the 2-flat with the average facet, but the char-

acterization of an average facet was the primary difficulty. Other avenues

included measuring the expected length of the sequence of edges between

corresponding vertices of the facets in the circuit, and measuring the ex-

pected maximum (d− 1)-dimensional area of the facets in the circuit.

However, in practice the performance of the Two-Flat algorithm is shown

to be good in figure 6.9, where the average length of each traversal l is shown

to be relatively small. For constant n the average length l actually goes

down for sets from distribution A as the dimension increases, even though the

number of facets m goes up rapidly, dropping to an average of approximately

25 steps per point for n = 3000 in <5. From this data we conclude that the

algorithm is an appropriate choice for the task.

Given that m rises very rapidly with d, a more informative measure of

the algorithms efficiency is the relation n × w/m, where w is the total num-

ber of steps taken by the Two-Flat algorithm for all points, measuring the

proportion of facets processed by the Two-Flat algorithm compared to the

size of the output, shown in figure 6.10.
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Figure 6.9: Average 2-flat traversal: l by n.
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By this measure, the Two-Flat algorithm can be seen to become much

more efficient as the dimension rises, and for distribution A, the ratio w/m

falls to 1 for <5. Since the overall complexity of the Two-Flat traversals for

all points can be done in Θ(d3w) expected time, for d > 4 the contribution

of this algorithm for distribution A is less than the processing required to

produce the output. From this data we conclude that for dimensions five and

greater the Two-Flat algorithm adds less than a factor of 2 to the overall

complexity, and can therefore be considered to be minor to the remainder of

the processing.

Finally, we present an argument to support the conjecture that the com-

plexity of the algorithm is O (m1/(d−1)) for the distributions studied.

First, note that the length of the worst case circuit is O (m) in <2. In

three dimensions, it seems natural to expect a 2-flat through the center of

the sphere to intersect something like O (
√
m) facets, since the intersection

is a one-dimenional line cutting through a two-dimensional area.

For general dimension d, keeping the radius r constant, the (d − 1)-

dimensional area of the surface of a sphere rises with O (rd−1), while the

length of the one-dimensional circumference of the sphere stays constant at

2πr. This line of reasoning suggests that the number of facets intersected by

a worst-case 2-flat might be something like O (m1/(d−1)).
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Figure 6.10: Relative two-flat efficiency: w/m by n.
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If the facets were regular, all with equal size and shape, this argument

could be extended almost immediately to give the O (m1/(d−1)) upper bound.

Unfortunately, there is no absolute guarantee immediately apparent that a

number of long, thin facets won’t be encountered, which when cut along their

short side will extend the length of the circuit, even though this eventuality

doesn’t arise in practice.

Now we examine the overall performance of online constructions. The

timing results for the online construction of sets of points from distributions

A and B are shown in figure 6.11. Particularly in higher dimensions the

online construction is significantly faster than the preprocessing construction.

Again, the timing results appear to be close to linear in n, but with a smaller

constant factor.

Assuming that the complexity of the Two-Flat algorithm is minor and

can be neglected dimensions five and greater, the following analysis explains

this behavior for distribution A.

A special case of the online problem for sets of points from distribution A

has a complexity advantage. When the points arrive in random order, then

the expected total number of facets t created by an online construction can

be shown to be Θ(dm) as follows.

Since S is from distribution A, all n points of the set are vertices of
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Figure 6.11: Cpu-timings: Cpu-time by n.
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conv (S), and from Buchta [6] we know that

m = cn

where c is constant for fixed d. Now let a be the average number of facets

around a vertex of conv (S). Then the following relationship holds: the

number of vertices times a must equal the number of facets times d, or

na = md .

Solving the first and second equation for a then gives

a = cd

so the expected average number of facets a is bounded for fixed dimension d

and not dependent on n or m.

In other words, the average size of each cap Ci does not increase with i.

This property is familiar in <3 where the number of facets of a convex hull

from distribution A is 2n − 4, so c ≈ 2 and the average number of facets

around each vertex is approximately 2 · d = 6.

The total number of facets t created by an online construction of the

convex hull of a set of points from distribution A is therefore

t = (d+ 1) +
n∑

i=d+2

|Ci |

so

t = Θ(na) = Θ(ncd) = Θ(dm)
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The same analysis holds for other spherical distributions, except that

the number of facets m is a function of cv instead of cn. For example, for

distribution B the expected total number of facets created will be t = Θ(dcn),

but the expected number of facets in the final hull m is less than cn whenever

all n points of the set are not vertices of the final convex hull.

This is the behavior of the construction in practice. The relative efficiency

of the online construction as measured by total facets created t divided by

number of facets in the final hull m, n × t/m, is shown in figure 6.12. For

distribution A it can be seen that t/m ≈ d, so d times as many facets are

created than will be present in the final convex hull.

Assuming that the Two-Flat procedure can be neglected in dimensions

d ≥ 5, and an Θ(d3) cost to create each facet, the expected complexity of the

online construction of convex hulls from distribution A is therefore Θ(d4m).

In the following section it will be shown that an additional factor of d can

be dropped from this complexity.

Finally, the empirical measure of efficiency n × cpu-time/m is shown in

figure 6.13, measuring the actual cost in cpu-time for the production of each

facet in the output, where it can be seen again that the online construction

out performs the preprocessing construction in higher dimensions. For both

distributions the cost per facet is actually dropping as the dimension increases
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Figure 6.12: Relative efficiency: t/m by n.
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for the sets studied, for distribution A to about 0.0025 seconds for n = 3000

in <5.

6.2.3 The Interlink Procedure

The performance of the construction of convex hull is primarily a function

of the creation of facets, but is also affected by the processing performed by

the Interlink algorithm, which links neighboring cap facets together across

their common subfacets.

Each invocation of Interlink causes a walk around a subsubfacet through

the visible set. Even though the cost of the walk has been amortized away,

the actual performance of the task might remain of interest. If it turned out

to be too inefficient, the O (|C | log |C |) scrabble sort procedure to perform

the same task could be preferable (see section 4.2.2), even though it requires

Θ(d2|C |) extra space.

One might assume that the length of each walk would rise rapidly with

the dimension, but in fact the average number of facets r in each subsubfacet

rotation remains constant as shown in figures 6.14—6.15 for both the pre-

processing and online cases and distributions A and B. For all cases, r < 4.

This implies that rotation around a subsubfacet in arbitrary dimension does

not differ much from the three dimensional case, where there are on average
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Figure 6.13: Cost per facet: Cpu-time/m by n.
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six facets around each subsubfacet (point), and we would expect the average

number of facets in each rotation to be less than or equal to four.

For spherical distributions the time complexity of each subsubfacet rota-

tion can then be given as Θ(d). This allows us to reduce the expected time

complexity of the online construction of convex hulls from distribution A as

follows.

Recall that phase two of the update has complexity O (d3|V |+ d2|C |),

and that the d3|V | term was calculated by bounding the number of facet/subsubfacet

pairs in the visible set V . Now the results in figures 6.14–6.15 show that the

average length of each subsubfacet rotation is constant with n and d, so the

average expected complexity of all d · |C |/2 subsubfacet traversals can be

given more exactly as Θ(d2|C |) instead of O (d3|V |). The overall expected

complexity of phase two is therefore just Θ(d2|C |).

Now each new cap facet T created is the union of a new point p and a

subfacet of an existing nonvisible facet G on the horizon. Therefore, T and

G differ by only one point, and the halfspace equation HalfT can be created

in Θ(d2) time from the system of linear equations used to create HalfG.

This would drop the complexity of phase one of the update also to Θ(d2|C |).

Given that the online construction of convex hulls from distribution A creates

t = Θ(dm) facets, the overall expected complexity of the algorithm can be
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Figure 6.14: Interlink performance: r by n.
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Figure 6.15: Interlink performance: r by n.
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reduced to

Θ(d3m)

by trading off an increase in storage from Θ(dm) to Θ(d2m) to store the

SSLE used to generate the halfspace equation of each facet. The advisability

of this method will depend on which constraint is in shortest supply, time or

space.

6.3 Construction of Cyclic Polytopes

Recall from section 2 that cyclic polytopes are worst-case convex hulls, de-

fined for example by a set of points that fall on a moment curve:

( t, t2, t3, . . . , td ), t ∈ <

All cyclic polytopes of n points in d-space are combinatorially equivalent,

are the worst-case convex hulls in terms of view of size with O (nbd/2c) facets,

and can be expected to be more difficult to construct than convex hulls from

spherical distributions.

The space complexity of convex hulls results in a curious feature: as

we can see by the presence of the floor operator, there is a step between

consecutive odd-even dimensions in which the number of facets increases by

a factor of n. That is, cyclic polytopes in consecutive even-odd dimensions,
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2 and 3, 4 and 5, 6 and 7, and so on are of the same order. This feature is

familiar in <2 and <3, where the worst-case number of facets is n and 2n− 4

respectively.

The vertices of the cyclic polytopes were generated from the distribution

pi = (i, i2, . . . , id)

on the moment curve (t, t2, t3, . . . , td), using integer arithmetic, and then

randomly ordered for online constructions.

Construction of cyclic polytopes from this distribution quickly revealed

that they constitute a particularly difficult case, limited to very low values

of n and d, above which the minimum angle between the normals of adjacent

facets of the polytope becomes zero. When this happens, the actual con-

vexity of the final polytope can no longer be assured, and shortly thereafter

concavities were found to occur between adjacent facets. This happens very

quickly, at n = 30 in six dimensions, n = 20 in seven dimensions, and only

n = 16 in eight dimensions.

Alternative combinatorially equivalent distributions were tried to allevi-

ate this problem, using smaller sequences of ascending powers and smaller

sequences of bases, as well as alternative mathematical procedures from IMSL

and LINPACK for generation of the facet equations, always using original

data, but without significantly increasing the range of n.
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From this we conclude that convex hulls of this type are particularly

difficult to construct, not so much because of space or time as might be

expected, but because of the near coplanarity of adjacent facets. A more

practical measure of the complexity of this type of problem would be the

number of bits needed to maintain the required precision.

Therefore, in the following we only present data for cyclic polytopes that

are correctly generated for three through eight dimensions. Figure 6.16 shows

the exponential rise in the number of facets m with d, where one can see the

clustering of even/odd dimensions 4 & 5 and 6 & 7.

Figure 6.16: Cyclic polytopes: m by n.

First we show a similar result as given in [21], that the incremental con-

struction of a cyclic polytope is O (nbd/2c) for even dimensions and O (nbd/2c+1)
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for odd dimensions. This can be done by finding an upper bound on the size

of a cap by the construction of a vertex figure.

Lemma 4 The number of facets in cap |Ci | of a cyclic d-polytope is at most

O ((i− 1)b(d−1)/2c).

Proof: Consider a vertex figure V of vertex pi of intermediate hull Pi, formed

by the intersection of a hyperplane H with Pi separating pi from the other

vertices. Now V is therefore a (d − 1)-polytope, and its vertices and facets

are defined by the intersection of H with the edges and facets containing pi

respectively. There are at most i− 1 edges containing pi in Pi, and therefore

at most i− 1 vertices in V . In the worst case therefore, V can have at most

O ((i− 1)b(d−1)/2c) facets. So there are at most O ((i− 1)b(d−1)/2c) facets in

Pi containing pi. 2

With a bound on the size of a cap, we can then bound the time complexity

of Θ(n) such updates as follows.

The algorithm is O (d3t), where t is the total number of facets created or

t = d+ 1 +
n∑

i=d+2

|Ci |

Now we know that |Ci | = O ((i− 1)b(d−1)/2c), so

t = O (nb(d−1)/2c+1)
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But when d is even then

b(d− 1)/2c+ 1 = bd/2c

so the overall algorithm has optimal Θ(nbd/2c) complexity in even dimensions

and O (nbd/2c+1) complexity when d is odd.

The actual performance of both the preprocessing and online methods of

construction as measured by n× Cputime is shown in figure 6.17.

Both algorithms perform equally well for the even dimensions, in terms

of time, but the online construction is markedly faster for odd dimensions

because the preprocessing algorithm creates a much larger total number of

facets t in odd dimensions as shown in figure 6.18. For example, the online

construction appears to create an almost linear number of facets in <3.

To explain this behavior, the actual number of facets surrounding each

point pi of the set was calculated, showing the pattern shown in table 6.2. For

even dimensions, the number of facets around each vertex is always equal for

all n vertices of the polytope. For the odd dimensions the number of facets

around each vertex is equal for n − (d + 1) of the vertices in the middle of

the set, while the remaining vertices on each end of the curve have a variable

number with the two extreme vertices having the most.

Assuming that this pattern is repeated in higher dimension (which may

be likely but not necessarily certain) then preprocessing constructions must
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Figure 6.17: Cpu timings: Cpu-time by n.
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Figure 6.18: Total facets: t by n.
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Number of facets around each vertex

d n p1 p2 p3 p4 p5 · · · pn−4 pn−3 pn−2 pn−1 pn

2 n 2 · · · 2

3 n n− 1 3 4 · · · 4 3 n− 1

4 26 46 · · · 46

27 48 · · · 48

28 50 · · · 50

29 52 · · · 52

5 26 275 65 85 84 · · · 84 85 65 275

27 299 68 89 88 · · · 88 89 68 299

28 324 71 93 92 · · · 92 93 71 324

29 350 74 97 96 · · · 96 97 74 350

6 26 462 · · · 462

27 506 · · · 506

28 552 · · · 552

29 600 · · · 600

7 16 275 155 191 183 184 · · · 184 183 191 155 275

17 352 187 232 223 224 · · · 224 223 232 187 352

18 442 222 277 267 268 · · · 268 267 277 222 442

19 546 260 326 315 316 · · · 316 315 326 260 546

Table 6.2: Cap sizes for cyclic polytopes.
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create many more convex hull facets than are in the final hull, since each

point added to the polytope is an endpoint.

For example, in <3 we can imagine a cyclic polytope as a spiral with

the vertices falling on the curve (t, t2, t3). If a light source were placed at

z = ∞ then half of the polytope would be lit and half would be dark. The

n − 2 facets on top of the polytope would be lit and all contain the point

pn, and the n − 2 facets on the bottom of the polytope would be dark and

all contain the point p1. When this polytope is constructed by adding the

points in lexicographic order, every point pi added to the polytope requires

the deletion of i− 3 facets and the creation of i− 1 new facets, resulting in

an overall Θ(n2) expected complexity even though the number of facets in

the final hull is only 2n− 4.

In other words, it is possible in odd dimensions to add the points in an

order such that the size of each cap will be on the order of the size of the

entire hull, resulting in an algorithm with Θ(nm) expected complexity, and

when the points of the set are added in the order they appear on the moment

curve this worst-case is achieved.

Note that this is not necessarily the result of the lexicographic sort. It

would be possible for the set of points to be oriented so that the sort places the

d+ 1 endpoints first in the set, leaving the remaining updates with constant
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cap sizes, but without knowing beforehand which vertices were endpoints it

is not clear how this orientation could be arranged.

For even dimensions on the other hand, no cap can be more than O (m/n),

so the order of arrival of the points is irrelevant to the analysis of complexity.

Furthermore, the data in table 6.2 suggests that in even dimensions each cap

|Ci | has the same number of facets as surround any of the other i−1 vertices,

so that the order of arrival truly does not affect the total number of facets

created.

For the online construction the total number of steps w taken by the

Two-Flat algorithm is quite small (see tables of data in appendix B), and

the ratio w/m is even smaller for these sets than for spherical distributions.

For cyclic polytopes or similar distributions the Two-Flat algorithm appears

to be an excellent choice, and we can assume that its contribution to the

remainder of the algorithm can be neglected even in low dimensions.

Assuming that the pattern shown in table 6.2 is repeated in higher di-

mensions, then the complexity of the online construction can be shown to be

within a constant multiple of optimal for fixed d by a similar analysis as for

the online construction of convex hulls from spherical distribution A.

That is, given a cyclic polytope with n vertices, the number of vertices
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times the average number of facets around each vertex equals md, or

na = md

and

a = md/n

From table 6.2 we find that for fixed d in both even and odd dimensions the

number of facets surrounding each vertex is constant for Θ(n) points, and the

endpoints in odd dimensions can be ignored since there are only a constant

number and the total number of facets in their caps can be no more than

O (m). The complexity of the construction is then a function of the total

number of facets created t, which can be bounded by

t = O (na) = O (dm)

The relative performance of both the preprocessing and online construc-

tions is shown in figure 6.19 by the relation n× t/m. The preprocessing con-

struction performs more poorly than the online construction, but becomes

more efficient in consecutive odd/even dimensions.

The online construction performs somewhat better, partly driven by lower

order terms. That is, for spherical distribution A the cap size stays constant

for fixed d but for cyclic polytopes
∑n

i=d+2 |Ci | is generally much less than

na, since ib(d−1)/2c is generally much less than nb(d−1)/2c.
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Figure 6.19: Relative efficiency: t/m by n.
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The better than expected complexity for the online construction of odd-

dimensional cyclic polytopes is also affected by the fact that from table 6.2

we see that most vertices of an odd-dimensional cyclic polytope of n points

are in fewer than m/n facets. For example, in three dimensions, n−(d+1) of

the vertices are in exactly four facets, less than the overall average of six. The

average cost of an addition in odd dimensions is therefore less than O (m/n).

This has a curious result.

For the online construction the ratio t/m is actually dropping for consec-

utive dimensions d and d+ 2 in figure 6.19 to some value under 2. From this

data we conclude that in practice this construction is very close to optimal

in both n and d. That is, in practice S will probably not be the vertices

of a perfect cyclic polytope, but rather a set of points from a very similar

distribution with similar characteristics. The data shown here then suggests

that the complexity of the Two-Flat traversals is negligible, the total number

of facets created t gets closer to m as d rises, and the expected complexity

of the construction therefore approaches Θ(d3m).

By making the same space/time trade-off made in section 6.2.3 to gen-

erate halfspace equations in Θ(d2) time from existing data, the expected

complexity of the online construction of cylic polytopes in both even and

odd dimensions can be reduced to Θ(d2m), which is a better result than that
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obtained for spherical distributions by a factor of d.

6.4 Space Requirements

Recall from section 4.1 that the space required for storage of each convex hull

facet is Θ(d) due to the implicit definition of subfacets. The storage actually

required for a facet with 64-bit storage for floating point values is 16d + 36

bytes, or 128d+ 288 bits.

With respect to temporary storage during construction, the space to store

the visible set is required throughout an update in order to carry out the

subsubfacet traversals during the Interlink phase. In the worst-case a given

visible set could include all but one facet of the existing convex hull. This

points out a weakness of the incremental paradigm for specialized sets of

points that are processed in an unfortunate order, where it could be possible

that intermediate hulls Pi will have many more facets than are actually in the

final hull Pn. The same concern does not apply to the true online problem,

where the arrival order of the points cannot be controlled.

For either a preprocessing or online construction, an upper bound on the

amount of memory required for the construction of a convex hull is clearly

less than twice as much as required for storage of the largest intermediate
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convex hull, since the maximum storage required is the maximum for all i of

|Pi |+ |Ci+1 | < |Pi |+ |Pi+1 |

For the online construction of convex hulls from distribution A the ex-

pected amount of storage required will be d|Pn−1 | + d|Cn |. If the expected

number of facets of a hull of i vertices is ci where c is as defined by Buchta’s

equations, then we know that the expected size of |Ci | is cd from section

6.2.2, and so the expected storage required will be

Θ(dc(n− 1) + d(dc)) = Θ(dc(n+ d− 1))

In other words, expected amount of storage required for the online construc-

tion of a convex hull of n points from distribution A is the same as is required

just to store a convex hull of n + d− 1 points, which may be useful when n

is close to d and the dimension is large.

6.5 An Application

The algorithms developed here were applied to a real world problem, the

Delauney triangulation of two dimensional surveying data along the Saint

John river, with mixed results.

The construction of the Delauney triangulation of a set of points in the

plane is a common precursor of many algorithms in computational geome-
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try. The Delauney triangulation is defined as follows: assuming that no four

points lie on any one circle, the circumcircles of the points of each trian-

gle do not include any other point. The Delauney traingulation is generally

preferred over other triangulations for many applications because of its reg-

ularity, i.e., it has the maximum minimum angle over all triangulations.

The Delauney triangulation is also the dual of the Voronoi diagram, the

set of polygons consisting of the portion of the plane closest to each point p of

the set S. The Voronoi diagram is a very useful structure, providing optimal

solutions to a number of proximity problems, such as the closest pair, nearest

neighbor search, all nearest neighbors, and planar convex hull problems [20]

An Θ(n log n) divide and conquer algorithm is given in [20] for the pla-

nar Voronoi diagram problem, and, by extension, the Delauney triangulation

problem. However, Brown has also showed that the d-dimensional Delauney

triangulation is transformable from the (d+1)-dimensional convex hull prob-

lem [5]. This can be done by putting the d-dimensional set of points onto a

(d+ 1)-dimensional paraboloid, that is

1. Make each point p = (c1, . . . , cd) of the d-dimensional input set S into

the point p∗ = ( c1, . . . , cd, |p |2 ) of (d+ 1)-dimensional set S∗;

2. Find conv (S∗);

3. Delete the ‘top’ facets of the polytope, i.e., those facets with a negative
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value in the last coordinate of the halfspace equation;

4. Project the remaining facets back into <d.

The procedure outlined above was implemented to generate the 2-dimensional

Delanauy triangulation, i.e., to find the convex hull of the 2-dimensional set

of points S projected on the three dimensional paraboloid z = x2 +y2, delete

the top facets, and then project the set of facets back into the plane. The

procedure was then applied to real data collected by a local surveying com-

pany.

Generation of the triangulation for the first set of data was successful, for

n = 20509, and taking a minute and a half cpu time in total.

However, for the second set of data, n = 43621, the deletion of facets with

upward normals failed. By generating the 2-dimensional hull of the set, it

was found to have only 28 vertices, because, as it was later disovered, it was

drawn from data collected along a river valley. In other words, some long

thin triangles on the edge of the set had normals with z coordinate very close

to zero. This suggest that this method may be impractical for the generation

of Delauney triangulations of these types of sets.

On the other hand, this is not necessarily a barrier to the construction of

Delauney triangulations of these types of sets by this procedure with some

alterations, especially considering its successful generation of the Delauney
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triangulation of the first set of 20509 points, which was later found to have

only 64 extreme points in the plane.

For large sets of points of this type with long, relatively straight sides,

one possible approach would be to add extra points to the set in appropri-

ate places in order to make the boundary more regular. Alternatively, the

set could be divided into partitions of an appropriate size—that is, small

enough that the points of the problem facets are low enough on the parabola

where the curve is more pronounced to have the correct sign in the z coordi-

nate. The optimal merge algorithm given for the planar divide-and-conquer

Voronoi diagram problem could then be used with modification to stitch the

partitions together.
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Chapter 7

Conclusions

The algorithms presented here provide perhaps the best online solution to

the higher dimensional convex hull problem for sets of points from spherical

distributions. The algorithms were tested in three through ten dimensions,

and have been demonstrated to provide fast, reliable solutions up to a limit

of twenty-four megabytes storage to store the final data structure.

7.1 Observations

The online construction consistently performed better than the preprocess-

ing construction by every measure, primarily because the average cap size

when the points are added in lexicographic from spherical distributions are

approximately twice as large as when the points are added in random order.
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The online construction is therefore preferred even when the set is entirely

known beforehand.

The incremental paradigm as implemented here for the online problem

generates the convex hull of sets of points distributed uniformly on spheres

in Θ(d4m) expected time, with Θ(dm) space required to store the convex

hull, and Θ(dmn+d−1
n

) expected space required for the construction.

The average length of each subsubfacet traversal remains less than four

with both n and d in all cases. Each pair of links between neighboring cap

facets can therefore be set in Θ(d) expected time, and the overall cost to add

a cap of |C | facets to the hull can be done in Θ(d2|C |) expected time, by

making a space trade-off and increasing the storage required to store the hull

to Θ(d2m) in order to generate facet equations in O (d2) time from existing

data. The expected time complexity of the algorithm can thereby be reduced

to Θ(d3m).

In practice, at least for the sets investigated here, the primary constraint

may well be space before time. When building convex hulls of sets of points

distributed on spheres in high dimensions an increase in storage requirements

by a factor of d will often be unacceptable, and the original algorithm will

probably be preferred in most cases.

For sets of points distributed inside spheres, like distribution B, the re-
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sults collected suggest that the most practical course in most cases is to

remove interior points in a preprocessing step, and then construct the con-

vex hull of the remaining vertices in Θ(d4cv) = Θ(d4m) expected time where

v is the number of vertices and c is the constant defined by Buchta’s equa-

tions. Any method for this procedure, even the O (n2) linear programming

method given in chapter 3, will be acceptable whenever c is large compared

to v. For example, some convex hulls of sets of points normally distributed

inside spheres were also investigated, where the algorithms were found to be

hopelessly inefficient without a preprocesser to remove interior vertices from

the set.∗

From table 6.1 it can be seen that in <10 the number of points n would

have to be approximately 872000 before n2 would become larger than m.

In other words, an O (n2) procedure for removal of interior points would be

minor compared to the remaining processing in higher dimensions for all but

extremely large values of n, where the size of the output makes the problem

practically intractable in any case.

Assuming for the moment that we have unlimited space, the other side

of the above argument is that for fixed d the construction of the convex

hull provides an algorithm that is linear in n for the vertex enumeration

∗A reliably fast method for this procedure that does not require linear programming

machinery is given in [24].
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problem, and the removal of interior points might be most efficiently done

for very large sets by finding the facets of the convex hull. For example, for

a set S of n = 101000 points distributed uniformly inside a sphere in <10,

the identification of the vertices of S by finding the facets of the convex hull

in Θ(n) time might well be faster than alternative methods. However, it

is clear that this constitutes a case well outside of the capability of present

technology, and regardless of advances in processing speed and storage it will

remain true that there will always be a value of d for which it will be faster

to remove interior vertices in a preprocessing step than to possibly add them

to the hull incrementally and delete them later.

Assuming that the conjecture that the complexity of the Two-Flat al-

gorithm is O (m1/(d−1)) by the argument given in section 6.2.2, the overall

complexity of the online construction of convex hulls from distribution A is

then O (d4m+ d3nm1/(d−1)).

The results in section 6.2.2 show that the Two-Flat algorithm provides

a fully acceptable solution to the two requirements of an online incremental

update, identifying interior vertices or a visible facet as required, and that

it becomes markedly more efficient as the dimension rises. For d ≥ 5 for

distribution A it traverses in total fewer facets than are in the final hull, so

in dimensions greater than four the Two-Flat algorithm increases the overall
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complexity of the algorithm by less than a factor of two, and can then be

considered to be minor.

For cyclic polytopes the Two-Flat algorithm works even better than for

spherical distributions. For these worst-case convex hulls the expected av-

erage length of a traversal to a visible facet is relatively short, and so the

Two-Flat algorithm can be considered to be an appropriate choice for these

types of distributions as well, contributing a minor cost to the overall pro-

cessing even in low dimensions.

The online construction of cyclic polytopes created far fewer total facets

t compared to the output size m. In even dimensions this behavior is caused

by lower order terms, i.e., by the fact that the average cap size is generally

much less than m/n for i < n. For odd dimensions this behavior is also

caused by the fact that the average cap size of most of the vertices interior to

the curve is less than m/n even for the final polytope. For example, the cap

size of n − 4 of the vertices of a 3-dimensional cyclic polytope is only four,

even though the overall average cap size must be approximately six (see table

6.2). As a result, the ratio of total facets created t divided by the output

size m for consecutive (even or odd) dimensions d and d + 2 falls to some

value less than 2, so that t = Θ(m). The expected complexity of the online

construction of cylic polytopes can then be given as Θ(d3m), or Θ(d2m)
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with the same space/time trade-off as discussed for spherical distributions,

which is actually better by a factor of d than the result obtained for spherical

distributions.

At the same time, it must be noted that the construction of cyclic poly-

topes was shown to be particularly difficult in practice, not because of time

or even space, but due to the near coplanarity of adjacent facets.

7.2 Open Questions

The major open question is the order of average case complexity of the Two-

Flat algorithm. In practice the method works well for the sets of points

studied, with time requirements well within acceptable limits, but obtaining

an upper bound, even just for spherical distributions, would be desirable. As

well, a reliable method of dealing with degeneracy would be desirable.

A more reliable solution for the Delauney triangulation problem by Brown’s

method would probably be directly usable by agencies with real-world re-

quirements. As given the method works well, but for sets with long thin

triangles on the edge of the set we encounter precision problems. One of

three approaches is possible: greatly increase the floating point precision,

add new points to the set, or break the set into small enough pieces to be

solved correctly and then merge them together with the optimal algorithm
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given in [20]. Actually, since the time of the merge algorithm is a function of

the number of triangles on the edges of the sets, the complexity of the merge

should be somewhat better than linear.

The utility of the algorithm for problems in very high d using external

storage would be of interest, where asymptotic behavior in much higher di-

mensions could be investigated. A version of the algorithm of this type would

be most appropriate for a stand-alone machine with very large external stor-

age where time was not a constraint.

The results obtained for the Delauney triangulation problem and cyclic

polytopes suggest that an important factor in the complexity of convex hull

finding algorithms, even for sets in general position, is the number of bits

required to maintain the needed precision for differentiation of the normals

of adjacent facets. This implies that the generation of convex hulls of sets not

in general position may be fraught with difficulties, where the angle between

adjacent facets is zero. Assuming infinite precision, the algorithm as given

will work correctly—that is, it will simply break non-simplicial facets into

several adjacent simplicial facets. Lacking sufficient precision, perturbation

methods may prove sufficient.
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Appendix A

Software

The following PL/1 program constructs convex hulls for the preprocessing

case or the online case, as selected by the argument proc type.

Rather than using pointers, a self-initializing doubly linked list is used.

That is, the list is initialized as new nodes are requested. This approach was

chosen to avoid storage overflow, and to minimize the possibility of anomolies

in the cpu timing results caused by repeated dynamic memory allocation.

The recursion of Traverse is unwrapped.

The program exits gracefully on the following errors: overflow of avail-

able storage; degeneracy in the Two-Flat procedure; and failure to create a

halfspace equation, signaled by a determinant of zero.

117



Convex : procedure

( S, n, d, S_index, P, p_size, m, proc_type, error_code ) ;

/*-------------------------------------------------------------------

| |

| Name: |

| |

| Convex |

| |

| Description: |

| |

| Find conv(S). Return a linked set of facets P. |

| |

| Usage: |

| |

| call Convex ( S, n, d, S_index, P, p_size, m, proc_type, |

| error_code ) |

| |

| S ( n, d ) - Set of n points in Rd. |

| |

| n - Size of S. |

| |

| d - Dimension. |

| |

| S_index - Permutation index of S if sorted. |

| |

| P ( * ) - Set of facets. |

| |

| vertices ( d ) - Indices of points of facet. |

| neighbor ( d ) - Pointers to neighboring facets. |

| h_y ( d ) - Coefficients of halfspace equation (h_y,h_b)|

| h_b - RHS constant of halfspace equation. |

| h_length - Length of halfspace vector h_y. |

| non_visible_facet - Set on creation, used by Interlink. |

| visible_facet - Set on creation, used by Interlink. |

| in_v - Set if facet is put in visible set V. |

| f_link - Forward link. |

| b_link - Backward link. |

| t_link - Temporary link, used to put facets in the |

| visible set V and the cap C. |

| |

| p_size - Size of P data structure. Must be as large as |

| the maximum number of facets required. |

| |

| m - Number of facets in the convex hull. |

| |

| error_code - |

| 0 = No error. |
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| 1 = Overflow of facet data structure. |

| 2 = Wrong path taken by Two_Flat. |

| 3 = Failure of Create_Facet. |

| |

| proc_type - |

| 1 = Preprocessing construction. |

| 2 = Online construction. |

| |

| |

| Logical Program Structure: |

| |

| Convex_initialization |

| Sort1 (if proc_type is preprocessing) |

| Create_simplex |

| Get_new_facet |

| Create_H |

| Lneqs |

| |

| Two_Flat (if proc_type is online) |

| Lneqs |

| |

| Traverse |

| Create_and_link_new_facet |

| Get_new_facet |

| Find_common_subfacet |

| Create_H |

| Lneqs |

| |

| Interlink |

| Rotate |

| Find_common_subfacet |

| |

| Delete_V |

| |

| Convex_termination |

| |

| Reference: |

| An Algorithm to Find the Facets of the Convex Hull in |

| Higher Dimensions, SCCCG Proceedings, August 1990. |

| |

| Author: |

| Wm. M. Stewart |

| Computer Science |

| University of New Brunswick |

| Fredericton, New Brunswick |

| Canada, E3B 5A3 |

| |

| Creation Date: |
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| 4 December 1989 |

| |

| Last Revision Date: |

| 5 September 1991 |

| |

| Copyright: |

| None. |

| |

-------------------------------------------------------------------*/

/*-------------------------------------------------------------------

| |

| Variable dictionary: |

| |

| avail - Head of available list of facets in P. |

| c_header - Head of list of cap facets in C. |

| centroid ( d ) - Centroid of first simplex P, used to set |

| the correct sign of halfspace equations. |

| d2 - Constant set to d+2, for declaration of |

| arrays of size d+2. |

| f - A facet. |

| i - Index of current point in S. |

| k - Visible facet found by two_flat algorithm. |

| link_full - Switch, turned on when the dynamic |

| initialization of the linked list of facets|

| finishes. |

| link_init_counter - Counter for dynamic initialization of the |

| linked list of facets. |

| p ( d ) - Current point. |

| stack ( p_size ) - Stack to unwrap the recursion of Traverse. |

| subsubfacet_size - Constant set to d-2, for declaration of |

| subsubfacet by Interlink. |

| v_header - Head of list of visible facets in V. |

| |

|------------------------------------------------------------------*/
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declare

s ( *, * ) float binary ( 21 ),

n fixed binary ( 31 ),

d fixed binary ( 31 ),

s_index ( * ) fixed binary ( 31 ),

1 P ( * ) controlled,

2 vertices ( * ) fixed binary ( 31 ),

2 neighbor ( * ) fixed binary ( 31 ),

2 h_y ( * ) float binary ( 53 ),

2 h_b float binary ( 53 ),

2 h_length float binary ( 53 ),

2 non_visible_facet fixed binary ( 31 ),

2 visible_facet fixed binary ( 31 ),

2 in_v bit ( 1 ),

2 f_link fixed binary ( 31 ),

2 b_link fixed binary ( 31 ),

2 t_link fixed binary ( 31 ),

p_size fixed binary ( 31 ),

m fixed binary ( 31 ),

proc_type fixed binary ( 31 ),

error_code fixed binary ( 31 ),

avail fixed binary ( 31 ),

c_header fixed binary ( 31 ),

centroid ( d ) float binary ( 53 ),

d2 fixed binary ( 31 ),

f fixed binary ( 31 ),

i fixed binary ( 31 ),

k fixed binary ( 31 ),

link_full bit ( 1 ),

link_init_counter fixed binary ( 31 ),

p ( d ) float binary ( 53 ),

stack ( p_size ) fixed binary ( 31 ) ctl,

subsubfacet_size fixed binary ( 31 ),

v_header fixed binary ( 31 ) ;

allocate stack ;
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/* Create initial simplex, centroid, initialize s_index, etc. */

call convex_initialization ;

/* Add points i=d+1...n. */

i = d+1 ;

do while ( i < n & error_code = 0 ) ;

i = i + 1 ;

p ( * ) = s ( i, * ) ;

if proc_type = 2 then k = two_flat ;

if k > 0 then do ; /* Update P with p_i. */

f = k ;

k = 0 ;

in_v ( f ) = ’1’b ;

t_link ( f ) = 0 ;

v_header = f ;

c_header = 0 ;

call traverse ( f ) ;

if error_code = 0 then do ;

call interlink ;

call delete_v ;

end ;

end ;

end ;

end ;

if error_code ^= 0 then do ;

put skip list

( ’*** ERROR *** Error_code =’, error_code, ’I = ’, i ) ;

end ;

return ;
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1traverse : procedure ( f ) ;

/*-------------------------------------------------------------------

| Traverse and identify the set of visible facets V, create the |

| cap C, and link C to the nonvisible facets on the horizon. |

-------------------------------------------------------------------*/

declare

stack_top fixed binary ( 31 ),

f fixed binary ( 31 ),

g fixed binary ( 31 ),

j fixed binary ( 31 ),

more bit ( 1 ),

sum builtin,

t fixed binary ( 31 ) ;
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stack_top = 0 ;

j = 0 ;

more = ’1’b ;

do while ( more & error_code = 0 ) ;

j = j + 1 ;

g = neighbor ( f, j ) ;

if ^ in_v ( g ) then

if sum (h_y(g,*)*p(*)) - h_b(g) > 0.0 then do ;

in_v ( g ) = ’1’b ;

t_link ( g ) = v_header ;

v_header = g ;

stack_top = stack_top + 1 ;

stack ( stack_top ) = g ;

end ;

else do ;

t = create_and_link_new_facet ;

t_link ( t ) = c_header ;

c_header = t ;

end ;

if j = d then do ;

if stack_top = 0 then

more = ’0’b ;

else do ;

f = stack ( stack_top ) ;

stack_top = stack_top - 1 ;

j = 0 ;

end ;

end ;

end ;

return ;
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1create_and_link_new_facet : procedure ;

/*-------------------------------------------------------------------

| Create a new facet and link to neighbor on the horizon. |

-------------------------------------------------------------------*/

declare

jj fixed binary ( 31 ),

t fixed binary ( 31 ) ;

t = get_new_facet ;

if error_code = 0 then do ;

vertices ( t, * ) = vertices ( f, * ) ;

non_visible_facet ( t ) = g ;

visible_facet ( t ) = f ;

do jj = j to d - 1 ;

vertices ( t, jj ) = vertices ( t, jj+1 ) ;

end ;

vertices ( t, d ) = i ;

neighbor ( t, d ) = g ;

jj = find_common_subfacet ( t, g ) ;

neighbor ( g, jj ) = t ;

call create_h ( t ) ;

if proc_type = 1 & i < n & k = 0 then

if sum (h_y(t,*)*s(i+1,*)) - h_b(t) > 0.0 then k = t ;

end ;

return ( t ) ;

end create_and_link_new_facet ;

end traverse ;
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1interlink : procedure ;

/*-------------------------------------------------------------------

| Interlink the new facets of the cap with each other. |

-------------------------------------------------------------------*/

declare

c_size fixed binary ( 31 ),

j fixed binary ( 31 ),

t fixed binary ( 31 ),

/* the variables below are used by rotate. */

a fixed binary ( 31 ),

b fixed binary ( 31 ),

g fixed binary ( 31 ),

h fixed binary ( 31 ),

l fixed binary ( 31 ),

phi ( subsubfacet_size ) fixed binary ( 31 ),

x fixed binary ( 31 ),

w fixed binary ( 31 ) ;

c_size = 0 ;

t = c_header ;

do while ( t ^= 0 ) ;

c_size = c_size + 1 ;

do j = 1 to d-1 ;

if neighbor ( t, j ) = 0 then call rotate ;

end ;

t = t_link ( t ) ;

end ;

m = m + c_size ;

return ;
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1rotate : procedure ;

/*-------------------------------------------------------------------

| Rotate around a subsubfacet phi. |

-------------------------------------------------------------------*/

do l = 1 to j-1 ;

phi ( l ) = vertices ( t, l ) ;

end ;

do l = j to d-2 ;

phi ( l ) = vertices ( t, l+1 ) ;

end ;

g = non_visible_facet ( t ) ;

h = visible_facet ( t ) ;

do while ( in_v ( h ) ) ;

a = 1 ;

b = 1 ;

x = 0 ;

do while ( b <= d-2 & x = 0 ) ;

if vertices ( h, a ) = phi ( b ) then do ;

a = a + 1 ;

b = b + 1 ;

end ;

else

if neighbor ( h, a ) ^= g then

x = neighbor ( h, a ) ;

else

a = a + 1 ;

end ;

do while ( x = 0 ) ;

if neighbor ( h, a ) ^= g then

x = neighbor ( h, a ) ;

else

a = a + 1 ;

end ;

g = h ;

h = x ;

end ;
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l = find_common_subfacet ( g, h ) ;

w = neighbor ( h, l ) ;

neighbor ( t, j ) = w ;

l = find_common_subfacet ( t, w ) ;

neighbor ( w, l ) = t ;

return ;

end rotate ;

end interlink ;
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1find_common_subfacet : procedure ( f, g ) ;

/*-------------------------------------------------------------------

| Find j such that sbf^F_j is shared by F and G. |

-------------------------------------------------------------------*/

declare

a fixed binary ( 31 ),

b fixed binary ( 31 ),

f fixed binary ( 31 ),

g fixed binary ( 31 ),

j fixed binary ( 31 ) ;

j = 0 ;

a = 1 ;

b = 1 ;

do while ( j = 0 ) ;

if vertices ( f, a ) = vertices ( g, b ) then do ;

a = a + 1 ;

b = b + 1 ;

end ;

else

if vertices ( f, a ) < vertices ( g, b ) then

a = a + 1 ;

else

j = b ;

if a > d then j = d ;

end ;

return ( j ) ;

end find_common_subfacet ;
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1two_flat : procedure returns ( fixed binary ( 31 ) ) ;

/*-------------------------------------------------------------------

| Find a first visible facet by 2-flat intersection, defined by |

| p, the centroid of the first facet in P, and the neighboring |

| facet G of F closest to p. The triangle defined by these three |

| points is then shifted to ensure it passes through the subfacet |

| shared by F and G, and then made into an isoceles. |

-------------------------------------------------------------------*/

declare

a ( d2, d2 ) float binary ( 53 ),

b ( d2 ) float binary ( 53 ),

b_save ( d2 ) float binary ( 53 ),

d_save fixed binary ( 31 ),

det float binary ( 53 ),

distance float binary ( 53 ),

distance_t float binary ( 53 ),

f fixed binary ( 31 ),

float builtin,

g fixed binary ( 31 ),

h fixed binary ( 31 ),

half_path_switch bit ( 1 ),

ii fixed binary ( 31 ),

intersect_switch bit ( 1 ),

j fixed binary ( 31 ),

jj fixed binary ( 31 ),

l fixed binary ( 31 ),

last_angle float binary ( 53 ),

last_last_angle float binary ( 53 ),

llast_last_angle float binary ( 53 ),

last_f fixed binary ( 31 ),

llast_f fixed binary ( 31 ),

last_g fixed binary ( 31 ),

llast_g fixed binary ( 31 ),

length1 float binary ( 53 ),

length2 float binary ( 53 ),

length float binary ( 53 ),

mod builtin,

more bit ( 1 ),

next_angle float binary ( 53 ),

next_facet fixed binary ( 31 ),

q1 ( d ) float binary ( 53 ),

q1t ( d ) float binary ( 53 ),

q2 ( d ) float binary ( 53 ),

q2t ( d ) float binary ( 53 ),

q3 ( d ) float binary ( 53 ),

start_facet fixed binary ( 31 ),
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sum builtin,

sqrt builtin,

v1 ( d ) float binary ( 53 ),

v2 ( d ) float binary ( 53 ) ;

f = b_link ( 1 ) ; /* First facet in P. */

if sum (h_y(f,*)*p(*)) - h_b(f) > 0.0 then return ( f ) ;

jj = 1 ;

g = neighbor ( f, jj ) ;

distance = (sum(h_y(g,*) * p(*)) - h_b(g)) / h_length(g) ;

do j = 2 to d ;

g = neighbor ( f, j ) ;

distance_t = (sum(h_y(g,*) * p(*)) - h_b(g)) / h_length(g) ;

if distance_t > distance then do ;

distance = distance_t ;

jj = j ;

end ;

end ;

g = neighbor ( f, jj ) ;

/* Find the midpoints of f, g, and their common subfacet. */

q1t ( * ) = 0.0 ;

q2t ( * ) = 0.0 ;

q3 ( * ) = 0.0 ;

do j = 1 to d ;

q1t ( * ) = q1t ( * ) + s ( vertices ( f, j ), * ) ;

q2t ( * ) = q2t ( * ) + s ( vertices ( g, j ), * ) ;

end ;

do j = 1 to d-1 ;

l = mod ( jj + j - 1, d ) + 1 ;

q3 ( * ) = q3 ( * ) + s ( vertices ( f, l ), * ) ;

end ;

q1t ( * ) = q1t ( * ) / float ( d ) ;

q2t ( * ) = q2t ( * ) / float ( d ) ;

q3 ( * ) = q3 ( * ) / float ( d-1 ) ;

/* Set q1 and q2. Make triangle (p,q1,q2) an isoceles. */ |
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q1 ( * ) = q3 ( * ) + 3 * ( q2t ( * ) - q1t ( * ) ) ;

q2 ( * ) = q3 ( * ) - 3 * ( q2t ( * ) - q1t ( * ) ) ;

q1t ( * ) = q1 ( * ) - p ( * ) ;

q2t ( * ) = q2 ( * ) - p ( * ) ;

length1 = sqrt ( sum ( q1t ( * ) * q1t ( * ) ) ) ;

length2 = sqrt ( sum ( q2t ( * ) * q2t ( * ) ) ) ;

if length1 > length2 then

q2 ( * ) = p ( * ) + ( length1 / length2 ) * q2t ( * ) ;

else do ;

q1 ( * ) = p ( * ) + ( length2 / length1 ) * q1t ( * ) ;

end ;

do ii = 1 to d ;

b_save ( ii ) = 0.0 ;

end;

b_save ( d+1 ) = 1.0 ;

b_save ( d+2 ) = 1.0 ;

last_f = f ;

llast_f = f ;

last_g = g ;

llast_g = g ;

start_facet = f ;

last_angle = 2.0 ;

last_last_angle = last_angle ;

llast_last_angle = last_angle ;

half_path_switch = ’1’b;

v1 ( * ) = q3 ( * ) - p ( * ) ;

length = sqrt ( sum ( v1 ( * ) * v1 ( * ) ) ) ;

v1 ( * ) = v1 ( * ) / length ;

/* Walk around 2-flat path. */

do while ( error_code = 0 & g ^= start_facet &

half_path_switch &

sum (h_y(g,*)*p(*)) - h_b(g) < 0.0 ) ;

next_facet = 0 ;

do ii = 1 to d while ( next_facet = 0 ) ;

h = neighbor ( g, ii ) ;
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if h ^= f then do ;

do j = 1 to d-1 ;

l = mod ( ii + j - 1, d ) + 1 ;

do jj = 1 to d ;

a ( jj, j ) = s ( vertices ( g, l ), jj ) ;

end ;

a ( d+1, j ) = 1.0 ;

a ( d+2, j ) = 0.0 ;

end ;

do j = 1 to d ;

a ( j, d ) = -p ( j ) ;

a ( j, d+1 ) = -q1 ( j ) ;

a ( j, d+2 ) = -q2 ( j ) ;

end ;

do j = d to d+2 ;

a ( d+1, j ) = 0.0 ;

a ( d+2, j ) = 1.0 ;

end ;

d_save = d + 2 ;

b ( * ) = b_save ( * ) ;

call lneqs ( b, det, a, d_save ) ;

if det = 0.0 then do ;

error_code = 2 ;

end ;

else do ;

intersect_switch = ’1’b ;

do j = 1 to d-1 ;

if b ( j ) < 0.0 then intersect_switch = ’0’b ;

end ;

if intersect_switch then next_facet = h ;

end ;

end ;

end ;

if next_facet = 0 then error_code = 2 ;

if error_code = 0 then do ;

llast_f = last_f ;

last_f = f ;

f = g ;
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llast_g = last_g ;

last_g = g ;

g = next_facet ;

/* Determine if path has gone more than half way around. */

v2 ( * ) = ( b ( d ) * p ( * ) +

b ( d+1 ) * q1 ( * ) +

b ( d+2 ) * q2 ( * ) ) ;

v2 ( * ) = v2 ( * ) - p ( * ) ;

length = sqrt ( sum ( v2 ( * ) * v2 ( * ) ) ) ;

v2 ( * ) = v2 ( * ) / length ;

next_angle = sum ( v1 ( * ) * v2 ( * ) ) ;

if next_angle <= last_last_angle then do ;

llast_last_angle = last_last_angle ;

last_last_angle = last_angle ;

last_angle = next_angle ;

end ;

else do ;

half_path_switch = ’0’b ;

end ;

end ;

end ;

if error_code ^= 0 | ^half_path_switch |

sum (h_y(g,*)*p(*)) - h_b(g) < 0.0 then do ;

g = 0 ;

end ;

return ( g ) ;

end two_flat ;
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1delete_v : procedure ;

/*-------------------------------------------------------------------

| Delete the set of visible facets V. |

-------------------------------------------------------------------*/

declare

f fixed binary ( 31 ),

v_size fixed binary ( 31 ) ;

v_size = 0 ;

f = v_header ;

do while ( f ^= 0 ) ;

f_link ( b_link ( f ) ) = f_link ( f ) ;

b_link ( f_link ( f ) ) = b_link ( f ) ;

f_link ( f ) = avail ;

avail = f ;

v_size = v_size + 1 ;

f = t_link ( f ) ;

end ;

m = m - v_size ;

return ;

end delete_v ;
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1convex_initialization : procedure ;

/*-------------------------------------------------------------------

| Initialize S_index. If proc_type=1 sort S lexicographically. |

| Create the initial simplex and centroid of the simplex. |

-------------------------------------------------------------------*/

declare

d3 fixed binary ( 31 ),

float builtin,

j fixed binary ( 31 ),

k fixed binary ( 31 ),

least_p ( d, d ) float binary ( 21 ),

max_p ( d, d ) float binary ( 21 ) ;

error_code = 0 ;

subsubfacet_size = d - 2 ;

d2 = d + 2 ;

do j = 1 to n ;

s_index ( j ) = j ;

end ;

if proc_type = 1 then call sort1 ( s, s_index, 1, n, d ) ;

centroid ( * ) = 0.0 ;

do j = 1 to d + 1 ;

centroid ( * ) = centroid ( * ) + s ( j, * ) ;

end ;

centroid ( * ) = centroid ( * ) / float ( d + 1 ) ;

/* Initialize linked list of facets P. */

m = 0 ;

f_link ( 1 ) = 1 ;

b_link ( 1 ) = 1 ;

link_init_counter = 1 ;

link_full = ’0’b ;

avail = 0 ;

d3 = d + 1 ;

call create_simplex ;

m = d+1 ;

return ;
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1Create_simplex : procedure ;

/*-------------------------------------------------------------------

| Create initial simplex from first d+1 points of S. |

-------------------------------------------------------------------*/

declare

f fixed binary ( 31 ),

f_index_list ( d3 ) fixed binary ( 31 ),

i fixed binary ( 31 ),

j fixed binary ( 31 ),

l fixed binary ( 31 ),

sum builtin,

temp fixed binary ( 31 ) ;

k = 0 ;

do i = 1 to d + 1 ;

f_index_list ( i ) = get_new_facet ;

end ;

do i = 1 to d + 1 ;

l = 0 ;

f = f_index_list ( i ) ;

do j = 1 to d + 1 ;

if i ^= j then do ;

l = l + 1 ;

vertices ( f, l ) = j ;

neighbor ( f, l ) = f_index_list ( j ) ;

end ;

end ;

call create_h ( f ) ;

/* If preprocessing case, set first visible facet K. */

if proc_type = 1 & k = 0 & n > d+1 then

if sum (h_y(f,*)*s(d+2,*)) - h_b(f) > 0.0 then

k = f ;

end ;

return ;

end create_simplex ;

end convex_initialization ;

1get_new_facet : procedure returns ( fixed binary ( 31 ) ) ;
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/*-------------------------------------------------------------------

| Get a new facet from available storage. |

-------------------------------------------------------------------*/

declare

last_node fixed binary ( 31 ),

t fixed binary ( 31 ) ;

if ^ link_full then do ;

link_init_counter = link_init_counter + 1 ;

t = link_init_counter ;

if link_init_counter >= p_size then link_full = ’1’b ;

end ;

else

if avail ^= 0 then do ;

t = avail ;

avail = f_link ( avail ) ;

end ;

else do ;

error_code = 1 ;

t = 1 ;

end ;

last_node = b_link ( 1 ) ;

f_link ( t ) = 1 ;

b_link ( t ) = last_node ;

f_link ( last_node ) = t ;

b_link ( 1 ) = t ;

neighbor ( t, * ) = 0 ;

in_v ( t ) = ’0’b;

return ( t ) ;

end get_new_facet ;
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1create_h : procedure ( f ) ;

/*-------------------------------------------------------------------

| Create the plane equation for facet F. |

-------------------------------------------------------------------*/

declare

a ( d, d ) float binary ( 53 ),

b ( d ) float binary ( 53 ),

dd fixed binary ( 31 ),

det float binary ( 53 ),

f fixed binary ( 31 ),

j fixed binary ( 31 ),

sqrt builtin,

sum builtin ;

do j = 1 to d ;

a ( j, * ) = s ( vertices ( f,j ), * ) ;

end ;

b ( * ) = 1.0 ;

h_b ( f ) = 1.0 ;

dd = d ;

call lneqs ( b, det, a, dd ) ;

if det = 0.0 then

error_code = 3 ;

else do ;

h_y ( f, * ) = 0.0 ;

h_y ( f, * ) = b ( * ) ;

h_length(f) = sqrt ( sum ( h_y(f,*) ** 2 ) ) ;

if sum (h_y(f,*) * centroid(*)) - h_b(f) > 0.0 then do ;

h_y ( f, * ) = -h_y ( f, * ) ;

h_b ( f ) = -h_b ( f ) ;

end ;

end ;

return ;

end create_h ;
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1sort1 : procedure ( a, b, s, e, d ) ;

/*---------------------------------------------------------------------

| Name: |

| Quicksort |

| Description |

| This subroutine implement the quicksort algorithm to |

| sort a floating point matrix A in lexicographic order. |

| As well, array B (probably an index array) is sorted. |

| Reference |

| Sedgewick, R. (1978) "Implementing Quicksort Algorithms", |

| Communications of the ACM, Volume 21, Number 10, October. |

---------------------------------------------------------------------*/

declare

a ( *, * ) float binary ( 21 ),

b ( * ) fixed binary ( 31 ),

d fixed binary ( 31 ),

done bit ( 1 ),

e fixed binary ( 31 ),

i fixed binary ( 31 ),

j fixed binary ( 31 ),

k fixed binary ( 31 ),

l fixed binary ( 31 ),

m fixed binary ( 31 ),

lstack ( 100 ) fixed binary ( 31 ),

r fixed binary ( 31 ),

rstack ( 100 ) fixed binary ( 31 ),

s fixed binary ( 31 ),

stackp fixed binary ( 31 ),

tempa ( d ) float binary ( 21 ),

tempb fixed binary ( 31 ),

trunc builtin ,

v ( d ) float binary ( 21 ),

x fixed binary ( 31 );

l = s ;

r = e ;

m = 10 ;

done = ’0’b ;

stackp = 0 ;

if r - l + 1 <= m then done = ’1’b;

do while ( ^ done ) ;

x = trunc ( ( l + r ) / 2 ) ;
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tempa = a ( x, * ) ;

a ( x, * ) = a ( l + 1, * ) ;

a ( l + 1, * ) = tempa ;

tempb = b ( x ) ;

b ( x ) = b ( l + 1 ) ;

b ( l + 1 ) = tempb ;

do k = 1 to d while ( a ( l + 1, k ) = a ( r, k ) ) ;

end ;

if a ( l + 1, k ) > a ( r, k ) then do;

tempa = a ( l + 1, * ) ;

a ( l + 1, * ) = a ( r, * ) ;

a ( r, * ) = tempa ;

tempb = b ( l + 1 ) ;

b ( l + 1 ) = b ( r ) ;

b ( r ) = tempb ;

end ;

do k = 1 to d while ( a ( l, k ) = a ( r, k ) ) ;

end ;

if a ( l, k ) > a ( r, k ) then do ;

tempa = a ( l, * ) ;

a ( l, * ) = a ( r, * ) ;

a ( r, * ) = tempa ;

tempb = b ( l ) ;

b ( l ) = b ( r ) ;

b ( r ) = tempb ;

end ;

do k = 1 to d while ( a ( l + 1, k ) = a ( l, k ) ) ;

end ;

if a ( l + 1, k ) > a ( l, k ) then do;

tempa = a ( l + 1, * ) ;

a ( l + 1, * ) = a ( l, * ) ;

a ( l, * ) = tempa ;

tempb = b ( l + 1 ) ;

b ( l + 1 ) = b ( l ) ;

b ( l ) = tempb ;

end ;

i = l + 1 ;
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j = r ;

v = a ( l, * ) ;

do while ( j >= i ) ;

i = i + 1 ;

do k = 1 to d while ( a ( i, k ) = v ( k ) ) ;

end ;

do while ( a ( i, k ) < v ( k ) ) ;

i = i + 1 ;

do k = 1 to d while ( a ( i, k ) = v ( k ) ) ;

end ;

end ;

j = j - 1 ;

do k = 1 to d while ( a ( j, k ) = v ( k ) ) ;

end ;

do while ( a ( j, k ) > v ( k ) ) ;

j = j - 1 ;

do k = 1 to d while ( a ( j, k ) = v ( k ) ) ;

end ;

end ;

if j < i then goto exit_loop1 ;

tempa = a ( i, * ) ;

a ( i, * ) = a ( j, * ) ;

a ( j, * ) = tempa ;

tempb = b ( i ) ;

b ( i ) = b ( j ) ;

b ( j ) = tempb ;

end ;

exit_loop1:

tempa = a ( l, * ) ;

a ( l, * ) = a ( j, * ) ;

a ( j, * ) = tempa ;

tempb = b ( l ) ;

b ( l ) = b ( j ) ;
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b ( j ) = tempb ;

if j - l <= m & r - i + 1 <= m then do ;

if stackp = 0 then do ;

done = ’1’b ;

end ;

else do ;

l = lstack ( stackp ) ;

r = rstack ( stackp ) ;

stackp = stackp - 1 ;

end ;

end ;

else do ;

if j - l <= m | r - i + 1 <= m then do ;

if j - l >= r - i + 1 then do ;

r = j - 1 ;

end ;

else do ;

l = i ;

end ;

end ;

else do ;

stackp = stackp + 1 ;

if j - l >= r - i + 1 then do;

lstack ( stackp ) = l ;

rstack ( stackp ) = j - 1 ;

l = i ;

end ;

else do ;

lstack ( stackp ) = i ;

rstack ( stackp ) = r ;

r = j - 1 ;

end ;

end ;

end ;

end ;

do i = 2 to e ;
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tempa = a ( i, * ) ;

tempb = b ( i ) ;

j = i - 1 ;

do k = 1 to d while ( a ( j, k ) = tempa ( k ) ) ;

end ;

do while ( a ( j, k ) > tempa ( k ) ) ;

a ( j+1, * ) = a ( j, * ) ;

b ( j+1 ) = b ( j ) ;

j = j - 1 ;

if j <= 0 then goto exit_loop2 ;

do k = 1 to d while ( a ( j, k ) = tempa ( k ) ) ;

end ;

end ;

exit_loop2 :

a ( j+1, * ) = tempa ;

b ( j+1 ) = tempb ;

end ;

return ;

end sort1;

end convex ;
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Appendix B

Tables of Data

B.1 Preprocessing–Distribution A

d n m t rt(d− 1)/2 cputime
3 250 496 2007 6536 0.543416
3 500 996 4446 14792 1.224330
3 750 1496 7058 23740 1.950036
3 1000 1996 9732 32936 2.763071
3 1250 2496 12457 42336 3.417683
3 1500 2996 15329 52324 4.248258
3 1750 3496 18293 62680 5.034505
3 2000 3996 21179 72724 5.840454
3 2250 4496 24102 82916 6.646776
3 2500 4996 27039 93164 7.447639
3 2750 5496 30119 103984 8.305676
3 3000 5996 33150 114608 9.169383
4 250 1560 7685 37153 2.745369
4 500 3196 18461 90611 6.711613
4 750 4891 30279 149107 10.937673
4 1000 6496 42457 209703 15.460477
4 1250 8214 55167 272845 20.132629
4 1500 9896 68519 339025 25.038315
4 1750 11591 82613 409655 29.919739
4 2000 13289 96627 479563 35.079025
4 2250 14957 110677 549882 40.350449
4 2500 16640 124509 618770 45.862183
4 2750 18287 139277 692929 50.744171
4 3000 20012 153883 765829 56.330063
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d n m t rt(d− 1)/2 cputime
5 300 7378 40389 262314 18.791428
5 600 15744 103619 677680 48.910309
5 900 24434 172073 1127636 80.405075
5 1200 33524 248938 1634921 117.762329
5 1500 42384 329709 2168329 156.817886
5 1800 51326 412743 2717369 195.172089
5 2100 60324 500935 3301065 237.037643
6 200 18136 90813 736153 52.722855
6 400 44054 265447 2164813 155.539566
6 600 71346 480749 3931811 283.673340
6 800 99142 713329 5839879 421.298340
6 1000 130285 971865 7961037 581.956299
6 1100 145701 1105301 9058099 530.039551
7 50 6610 20979 200704 14.681265
7 100 24094 96936 937929 68.439758
7 120 32314 139162 1349604 99.021515
7 150 46244 211837 2059613 150.767731
7 200 72616 361909 3526119 259.167236
7 250 101114 537473 5247616 387.031006
7 300 132534 743447 7266659 538.060059
7 350 164398 966930 9462136 703.233887
8 20 1167 2305 24676 1.910583
8 40 10573 31127 347430 26.405563
8 60 28920 96751 1087860 82.418610
8 80 52996 201611 2277690 173.387970
8 100 82769 336955 3815351 292.082520
8 120 116980 510287 5790055 442.375977

147



d n m t rt(d− 1)/2 cputime
9 10 10 10 0 0.006658
9 20 1780 3088 37131 3.033577
9 30 9260 20320 254504 20.342789
9 40 25898 70059 895134 57.613419
9 50 49676 154761 1991673 128.336334
9 60 84600 278690 3593019 231.765076

10 13 84 105 1126 0.092323
10 18 1231 1933 25724 1.810435
10 23 5033 9591 133339 9.185479
10 28 13296 30075 426825 29.143326
10 33 27255 66233 945960 64.449890
10 38 49660 128621 1848796 125.584793
10 43 77314 209909 3024909 205.908890
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B.2 Preprocessing–Distribution B

d n v m t rt(d− 1)/2 cputime
3 250 59 114 1599 5192 0.452103
3 500 86 168 3353 11037 0.955377
3 750 104 204 5101 16886 1.460204
3 1000 121 238 6871 22766 2.009170
3 1250 136 268 8608 28453 2.474198
3 1500 141 278 10391 34453 2.964301
3 1750 156 308 12163 40436 3.495768
3 2000 158 312 13856 46085 3.987372
3 2250 165 326 15611 51943 4.499757
3 2500 168 332 17414 57960 5.038630
3 2750 180 356 19179 63940 5.523833
3 3000 183 362 21017 70142 6.049145
4 250 140 760 6395 31262 2.316963
4 500 214 1189 14215 70092 5.196110
4 750 270 1554 22353 110723 8.228250
4 1000 321 1847 30043 149251 11.151294
4 1250 346 1991 38343 190628 14.354426
4 1500 384 2244 46961 233804 17.486008
4 1750 422 2448 55265 275340 20.568893
4 2000 461 2671 63981 318951 23.916840
4 2250 490 2846 72853 363531 26.877502
4 2500 516 2997 81359 406099 30.351440
4 2750 551 3211 90067 449754 33.489288
4 3000 588 3433 99009 494431 36.875534

149



d n v m t rt(d− 1)/2 cputime
5 300 230 4564 34962 228514 16.349777
5 600 391 8230 83776 551276 39.364044
5 900 519 11166 135111 891118 63.648026
5 1200 626 13672 187901 1240920 89.348999
5 1500 745 16256 245184 1620883 117.161957
5 1800 844 18380 300824 1990639 143.531052
5 2100 930 20340 357494 2366603 172.412323
5 2400 1020 22474 413259 2736260 199.320847
6 200 195 15523 86643 703768 50.346786
6 400 362 32469 232765 1901768 136.099869
6 600 526 49374 420485 3448334 248.721420
6 800 677 66271 616039 5057182 365.856689
6 1000 810 80776 828633 6811090 506.701172
6 1200 947 94686 1032433 8490308 497.943604
6 1400 1063 107509 1254213 10320815 608.731445
6 1600 1189 121247 1478645 12172286 715.531494
7 50 50 6274 20149 192610 14.068970
7 150 150 42612 203319 1975734 144.201508
7 250 249 89902 515051 5033958 369.023926
7 350 347 138110 881886 8633461 635.695313
7 400 395 163540 1085299 10630730 636.922607
8 20 20 1153 2299 24684 1.894699
8 40 40 10247 30679 343148 26.105667
8 60 60 27309 96549 1086473 82.606674
8 80 80 49154 192865 2177189 165.814514
8 100 100 77843 320619 3628435 277.994629
8 120 120 110371 488999 5546534 424.716064
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d n v m t rt(d− 1)/2 cputime
9 10 10 10 10 0 0.006631
9 20 20 1734 3105 37247 3.054101
9 30 30 9384 21421 269418 21.443268
9 40 40 26560 70578 900389 58.057816
9 50 50 52348 151170 1935393 124.732651
9 60 60 87846 272392 3502585 225.889145

10 13 13 84 107 1162 0.096219
10 18 18 1214 1923 25482 1.819850
10 23 23 5226 9115 124635 8.707877
10 28 28 13094 26337 369387 25.454758
10 33 33 26610 59983 851104 58.148590
10 38 38 47281 123077 1770392 120.009735
10 43 43 72831 207745 2999508 203.585541
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B.3 Online—Distribution A

d n m t rt(d− 1)/2 w cputime
3 300 596 1659 4844 3493 1.241896
3 600 1196 3450 10208 9981 3.229308
3 900 1796 5252 15616 18181 5.657092
3 1200 2396 7089 21164 27852 8.451158
3 1500 2996 8932 26736 38748 11.581150
3 1800 3596 10740 32168 50697 14.940383
3 2100 4196 12550 37608 64377 18.745392
3 2400 4796 14359 43044 78504 22.638809
3 2700 5396 16158 48440 94611 27.069321
3 3000 5996 17978 53920 111547 31.497559
4 250 1560 5633 26538 2454 2.945844
4 500 3196 12051 57073 6468 6.821815
4 750 4891 18489 87563 11136 10.988282
4 1000 6496 25001 118606 16875 15.669538
4 1250 8214 31643 150123 23318 20.664337
4 1500 9896 38453 182619 30041 25.812790
4 1750 11591 45191 214672 37292 30.916367
4 2000 13289 51813 246160 44884 36.367722
4 2500 16640 65029 308992 61379 47.806137
4 3000 20012 78361 372508 78846 59.642883
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d n m t rt(d− 1)/2 w cputime
5 300 7378 28969 184534 3091 15.084981
5 600 15744 66594 426477 8423 35.598633
5 900 24434 106232 681744 14715 58.051895
5 1200 33524 146978 943901 21637 81.347794
5 1500 42384 188669 1212495 29550 105.831482
5 1800 51326 230905 1484715 37534 130.833496
5 2100 60324 274271 1764630 45882 155.623627
5 2400 69268 318081 2047516 54734 183.067596
5 2700 78352 361651 2328732 63871 209.402374
5 3000 87588 404962 2607842 73638 235.348267
6 200 18136 74385 597674 1673 44.460373
6 400 44054 195985 1580393 4952 117.849823
6 600 71346 331619 2678345 8582 200.793365
6 800 99142 480137 3883016 12936 293.006836
6 1000 130285 629925 5094030 17710 388.180908
6 1100 145701 707409 5722396 20205 350.739258
7 50 6610 20645 197377 183 14.933167
7 150 46244 185440 1793876 1091 134.506302
7 250 101114 444147 4307495 2478 321.758789
7 350 164398 742458 7204490 4186 538.721191
8 20 1167 2201 23268 21 1.830634
8 40 10573 26901 296603 100 22.897263
8 60 28920 87231 973810 208 74.741302
8 80 52996 175545 1970722 351 151.859161
8 100 82769 294069 3310222 518 256.305176
8 120 116980 437191 4929963 777 384.577881
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d n m t rt(d− 1)/2 w cputime
9 10 10 10 0 0 0.006309
9 20 1780 3294 40213 19 3.280164
9 30 9260 20710 259715 41 20.946259
9 40 25898 64680 819656 80 65.850830
9 50 49676 141407 1805630 162 146.061829
9 60 84600 254083 3256009 227 263.967285

10 20 2498 4199 57086 14 4.004929
10 24 6367 12543 175468 25 12.153897
10 28 13296 27485 387677 42 26.701096
10 36 38850 94019 1344909 76 92.007553
10 40 61597 154283 2213666 87 150.984787
10 44 83391 227551 3280842 98 224.667068
10 46 95785 269585 3892733 110 266.585205
10 47 103705 289019 4170524 111 284.633545
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B.4 Online—Distribution B

d n v m t rt(d− 1)/2 w cputime
3 300 69 134 637 1919 2915 0.806791
3 600 95 186 993 3043 7253 1.878896
3 900 115 226 1190 3647 11970 3.012170
3 1200 131 258 1410 4334 17231 4.320048
3 1500 141 278 1569 4828 22614 5.616176
3 1800 155 306 1729 5323 28433 7.032525
3 2100 160 316 1903 5900 34138 8.389588
3 2400 163 322 1998 6212 39971 9.745375
3 2700 177 350 2124 6599 45854 11.151486
3 3000 183 362 2256 7024 51790 12.654961
4 250 140 760 3221 15172 2653 2.160418
4 500 214 1189 5477 25922 6501 4.486297
4 750 270 1554 7697 36571 10857 6.993716
4 1000 321 1847 9601 45662 15610 9.571816
4 1250 346 1991 11197 53461 20743 12.202708
4 1500 384 2244 12735 60850 26232 14.940354
4 1750 422 2448 14003 66920 31796 17.615082
4 2000 461 2671 15241 72851 37687 20.493759
4 2250 490 2846 16529 79045 43960 23.440979
4 2500 516 2997 17711 84799 50103 26.459335
4 2750 551 3211 19001 90994 56174 29.235458
4 3000 588 3433 20159 96433 62411 32.199295
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d n v m t rt(d− 1)/2 w cputime
5 300 230 4564 22844 146602 3081 12.438333
5 600 391 8230 44411 285661 8422 25.996475
5 900 519 11166 64509 415769 14621 39.245941
5 1200 626 13672 79663 513510 21515 50.200943
5 1500 745 16256 96873 625196 28954 63.107910
5 1800 844 18380 113354 732363 36575 75.418076
5 2100 930 20340 128467 830474 44411 87.613846
5 2400 1020 22474 143992 931058 52883 100.390213
5 2700 1096 24260 156560 1012706 61643 111.682068
5 3000 1180 25782 166855 1079238 70885 122.667404
6 200 195 15523 64555 517605 1658 38.808563
6 400 362 32469 154465 1245358 5044 94.302505
6 600 526 49374 259827 2101140 8987 159.467392
6 800 677 66271 360307 2916214 13190 222.528656
6 1000 810 80776 450473 3647161 18039 285.375488
6 1200 947 94686 543361 4401941 23153 276.147461
6 1400 1063 107509 625801 5070517 28306 320.179932
6 1600 1189 121247 712809 5776299 33640 365.990234
7 50 50 6274 19043 181527 167 13.584641
7 150 150 42612 163858 1580408 1182 118.494812
7 250 249 89902 383554 3710932 2573 279.927490
7 350 347 138110 645931 6264269 4284 472.402832
7 400 395 163540 785757 7624358 5226 462.365234
8 20 20 1153 2247 23845 21 1.885442
8 40 40 10247 25353 279192 129 21.555115
8 60 60 27309 83137 928707 257 71.356918
8 80 80 49154 170159 1912281 492 147.271713
8 100 100 77843 290223 3271170 682 256.129639
8 120 120 110371 417245 4703536 861 363.381104
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d n v m t rt(d− 1)/2 w cputime
9 10 10 10 10 0 0 0.006267
9 20 20 1734 3227 39504 16 3.209914
9 30 30 9384 20189 252331 41 20.400818
9 40 40 26560 63737 805735 94 65.109177
9 50 50 52348 146883 1876707 159 150.302200
9 60 60 87846 255994 3277826 225 261.567871

10 14 14 168 221 2561 4 0.202362
10 18 18 1214 2091 28482 17 2.017103
10 22 22 4216 7607 105268 26 7.336512
10 26 26 9369 18963 266433 45 18.373535
10 30 30 18211 38763 547803 63 37.664398
10 34 34 30366 69481 988469 71 67.512741
10 38 38 47281 112979 1611951 85 109.992798
10 42 42 67098 177341 2547368 108 173.505081
10 46 46 94270 238143 3408047 133 232.763702
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B.5 Cyclic Polytopes—Preprocessing

d n m t rt(d− 1)/2 cputime
3 4 4 4 0 0.001030
3 5 6 8 10 0.002053
3 6 8 13 24 0.003512
3 8 12 26 64 0.007136
3 10 16 43 120 0.011638
3 12 20 64 192 0.018139
3 14 24 89 280 0.025338
3 16 28 118 384 0.032897
3 18 32 151 504 0.041984
3 20 36 188 640 0.051871
3 22 40 229 792 0.062946
3 24 44 274 960 0.076086
3 26 48 323 1144 0.089547
3 27 50 349 1242 0.098679
3 28 52 376 1344 0.106371
3 29 54 404 1450 0.113280
3 30 56 433 1560 0.120610
3 35 66 593 2170 0.166673
3 40 76 778 2880 0.218483
3 45 86 988 3690 0.276179
3 50 96 1223 4600 0.344103
3 55 106 1483 5610 0.419160
3 60 116 1768 6720 0.495610
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d n m t rt(d− 1)/2 cputime
4 5 5 5 0 0.001554
4 6 9 11 21 0.003616
4 7 14 19 51 0.006324
4 9 27 41 138 0.014135
4 11 44 71 261 0.024333
4 13 65 109 420 0.038004
4 15 90 155 615 0.053521
4 17 119 209 846 0.073394
4 19 152 271 1113 0.094908
4 21 189 341 1416 0.119319
4 23 230 419 1755 0.146569
4 25 275 505 2130 0.179451
4 27 324 599 2541 0.212464
4 28 350 649 2760 0.233201
4 29 377 701 2988 0.252488
4 30 405 755 3225 0.261692
4 35 560 1055 4545 0.365456
4 40 740 1405 6090 0.488134
4 45 945 1805 7860 0.629660
4 50 1175 2255 9855 0.787995
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d n m t rt(d− 1)/2 cputime
5 6 6 6 0 0.001980
5 7 12 15 45 0.006013
5 8 20 29 123 0.012332
5 10 42 76 410 0.032887
5 12 72 155 925 0.069315
5 14 110 274 1732 0.125261
5 16 156 441 2895 0.203850
5 18 210 664 4478 0.309138
5 20 272 951 6545 0.444201
5 22 342 1310 9160 0.615529
5 24 420 1749 12387 0.826264
5 26 506 2276 16290 1.075981
5 27 552 2575 18515 1.214857
5 28 600 2899 20933 1.360541
5 29 650 3249 23552 1.537246
6 7 7 7 0 0.002840
6 8 16 19 72 0.009097
6 9 30 39 202 0.020064
6 11 77 111 700 0.059635
6 13 156 239 1622 0.130934
6 15 275 439 3096 0.242777
6 17 442 727 5250 0.403492
6 19 665 1119 8212 0.624999
6 21 952 1631 12110 0.913770
6 23 1311 2279 17072 1.285749
6 25 1750 3079 23226 1.754661
6 26 2002 3541 26790 2.022758
6 27 2277 4047 30700 2.330220
6 28 2576 4599 34972 2.630606
6 29 2900 5199 39622 2.993076
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d n m t rt(d− 1)/2 cputime
7 8 8 8 0 0.003610
7 9 20 24 120 0.014097
7 10 40 54 370 0.034063
7 11 70 104 814 0.068408
7 12 112 181 1528 0.120396
7 13 168 293 2600 0.198245
7 14 240 449 4130 0.305663
7 15 330 659 6230 0.453205
7 16 440 934 9024 0.646744
7 17 572 1286 12648 0.897388
7 18 728 1728 17250 1.212815
8 9 9 9 0 0.004854
8 10 25 29 170 0.020524
8 11 55 69 540 0.052780
8 12 105 139 1219 0.110019
8 13 182 251 2339 0.202097
8 14 294 419 4055 0.339410
8 15 450 659 6545 0.540579
8 16 659 989 10020 0.810363
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B.6 Cyclic Polytopes—Online

d n m t rt(d− 1)/2 w cputime
3 4 4 4 0 0 0.000990
3 5 6 7 6 2 0.002172
3 6 8 11 16 3 0.003088
3 8 12 23 52 8 0.006797
3 10 16 31 72 16 0.010500
3 12 20 35 76 18 0.011853
3 14 24 45 104 25 0.015534
3 16 28 58 144 33 0.020531
3 18 32 87 248 50 0.032309
3 20 36 67 156 85 0.035957
3 22 40 82 204 92 0.042650
3 24 44 106 288 98 0.048420
3 26 48 141 416 102 0.057017
3 27 50 164 502 104 0.065460
3 28 52 130 360 131 0.059807
3 29 54 151 438 150 0.069180
3 30 56 171 512 160 0.074983
3 35 66 145 378 214 0.082689
3 40 76 153 380 302 0.115612
3 45 86 245 718 359 0.137382
3 50 96 238 660 459 0.170282
3 55 106 261 722 510 0.175350
3 60 116 302 856 567 0.194608
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d n m t rt(d− 1)/2 w cputime
4 5 5 5 0 0 0.001723
4 6 9 11 21 2 0.003841
4 7 14 19 51 2 0.006383
4 9 27 41 138 11 0.016736
4 11 44 71 261 13 0.025938
4 13 65 109 420 14 0.038923
4 15 90 155 615 24 0.057481
4 17 119 209 846 36 0.081409
4 19 152 271 1113 63 0.112305
4 21 189 341 1416 75 0.140079
4 23 230 419 1755 87 0.168936
4 25 275 505 2130 105 0.206749
4 27 324 599 2541 129 0.247895
4 28 350 649 2760 121 0.262470
4 29 377 701 2988 153 0.291356
4 30 405 755 3225 166 0.311846
4 35 560 1055 4545 253 0.443878
4 40 740 1405 6090 332 0.594186
4 45 945 1805 7860 438 0.770495
4 50 1175 2255 9855 483 0.965787
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d n m t rt(d− 1)/2 w cputime
5 6 6 6 0 0 0.001987
5 7 12 14 36 2 0.005472
5 8 20 28 114 4 0.012373
5 10 42 67 333 6 0.030335
5 12 72 116 598 9 0.051666
5 14 110 183 980 18 0.084550
5 16 156 271 1497 17 0.121147
5 18 210 456 2772 23 0.208220
5 20 272 456 2497 66 0.229717
5 22 342 630 3609 44 0.290301
5 24 420 824 4858 39 0.374031
5 26 506 1140 7059 44 0.521688
5 27 552 1382 8825 44 0.638772
5 28 600 1171 6908 110 0.572909
5 29 650 1394 8504 101 0.670661
6 7 7 7 0 0 0.002567
6 8 16 19 72 1 0.009057
6 9 30 39 202 4 0.020544
6 11 77 111 700 5 0.059572
6 13 156 239 1622 12 0.132046
6 15 275 439 3096 18 0.247712
6 17 442 727 5250 17 0.402760
6 19 665 1119 8212 22 0.623799
6 21 952 1631 12110 33 0.911985
6 23 1311 2279 17072 42 1.282188
6 25 1750 3079 23226 41 1.725435
6 26 2002 3541 26790 41 1.987620
6 27 2277 4047 30700 42 2.273267
6 28 2576 4599 34972 40 2.576137
6 29 2900 5199 39622 45 2.924273
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d n m t rt(d− 1)/2 w cputime
7 8 8 8 0 0 0.003614
7 9 20 23 105 1 0.013326
7 10 40 53 355 3 0.034004
7 11 70 92 649 6 0.060239
7 12 112 160 1243 5 0.106505
7 13 168 245 1968 6 0.163203
7 14 240 362 3000 14 0.247197
7 15 330 510 4310 12 0.346789
7 16 440 694 5954 18 0.478780
7 17 572 958 8479 17 0.657053
7 18 728 1354 12511 18 0.941994
7 19 910 1900 18251 19 1.350279
8 9 9 9 0 0 0.004789
8 10 25 29 170 1 0.020888
8 11 55 69 540 3 0.054424
8 12 105 139 1219 6 0.111768
8 13 182 251 2339 5 0.203203
8 14 294 419 4055 10 0.348711
8 15 450 659 6545 15 0.549171
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